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Introduction

There has been a revolution in nonlinear physics over the past twenty years.
Two great discoveries, each of which, incidentally, was made with the aid of the
computer experiment, have radically changed the thinking of scientists about
the nature of nonlinearity and introduced two new theoretical constructs into
the field of dynamics. The first of these is the soliton and the second is the
strange attractor. Before this period of discovery, our understanding of non-
linear behavior in systems with many degrees of freedom was limited to
situations which were capable of being described by a purely hyperbolic system
of equations (compressible flows, shock waves) or which were small perturba-
tions away from linear states. While there are still many nonlinear processes
like fully developed turbulence and quantum systems with large fluctuations
about which little is known, there are also several other types of nonlinear
behavior which occur widely in nature and which can now be categorized,
predicted and understood. No longer does the term nonlinear, which literally
means not linear, connote a domain of understanding beyond the pale.

This is a book about solitons as they appear in mathematics and physics. It is
an outgrowth of a set of lectures I gave in June 1982 as part of a series
supported by the National Science Foundation through the Conference Board
on the Mathematical Sciences (CBMS). In writing it, I have tried to keep the
serious student who is a nonexpert uppermost in mind from the point of view
of both style and price. This is not an encyclopaedia of information on solitons
in which every sentence is interrupted by either a caveat or a reference.
Rather, I have tried to tell the story of the soliton as I would like to have heard
it as a graduate student, with some historical development, lots of motivation,
frequent attempts to relate the topic in hand to the big picture and a clear
indication of the direction or directions in which the subject is going. Often, the
important ideas are repeated several times, sometimes in slightly different
contexts. As a consequence of the style, the book at times is woefully
inadequate in assigning proper credit to the many colleagues who have contri-
buted so much to this fascinating subject. For these omissions, [ apologize.

On the other hand, the book is not easy and, except for the opening chapter
which tells the story of the soliton’s discovery, is not meant for armchair
reading. It demands a sharp pencil and even sharper wits. There are five
chapters, the purpose of the first of which I have already mentioned. The
second chapter introduces the reader to the origin and physics of the
Korteweg—de Vries (KdV) and nonlinear Schrodinger (NLS) equations and lays
great emphasis on their universality and ubiquity, on which matter I will have
more to say in the second half of this introduction. This chapter also discusses
their derivation as asymptotic solvability conditions. In trying to stress what is
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vi INTRODUCTION

of universal importance, the chapter focuses (no pun intended) a lot of
attention on the Benjamin-Feir or envelope modulational instability which
plays a major role in many physical contexts. It is a manifestation of the fact
that monochromatic wavetrains are often unstable and develop local pulselike
or soliton behavior. In one space dimension, the pulse develops until the
envelope soliton shape is formed. In higher dimensions, the effect is more
dramatic and the solution can develop singularities in finite time, the manifes-
tation of which behavior is seen in nonlinear optics (as filamentation) and in
plasma physics (collapse of Langmuir waves). The last section is devoted to a
comprehensive discussion of the connection between what is generally known
as Whitham theory and the nonlinear Schrodinger equation. On the face of it,
it would seem that the latter is a simple, small amplitude limit of the former.
That is not the case and a much more subtle limit process is involved. It turns
out to be directly analogous to the problem of relating the behaviors of a
continuous system away from and near to a phase transition. In the former
circumstance, the amplitude of the order parameter is slaved to the gradient of
the phase (analogous to solutions in Whitham theory) whereas in the latter
circumstance the amplitude develops a life of its own.

The third chapter introduces soliton mathematics in the standard way. First,
we show how one derives the families of integrable equations associated with a
given eigenvalue problem and how to endow the equations with a Hamiltonian
structure. Whereas the chapter mainly concentrates on the two simplest
families, the KdV and NLS, the exercises at the end of Sections 3b and 3c
involve headier stuff. The reader should eventually familiarize himself with
these exercises; in particular, Exercise 3b(5) introduces the inverse scattering
framework for evolution equations with more than one spatial dimension.
Following these sections, I introduce the method of inverse scattering and show
how to solve the initial-boundary problem for the Korteweg—deVries equation
on the infinite line. I also give a lengthy discussion of how to use the ideas of
inverse scattering theory to analyze situations which can be described by a
perturbed Korteweg-deVries equation. In particular, the problem of the prop-
agation of a solitary wave in a channel of slowly changing depth is discussed in
great detail and a method is developed, which has general application, to
compute the distorted flow field, including the wave of reflection. As you will
see, this is a nontrivial problem because the perturbation not only changes the
solitary wave but it also introduces new flow components. The last section of
this chapter deals with ways of constructing special classes of solutions which
are often of most interest in applications; here you will meet multisolitons, the
rational solutions and finally the multiphase periodic solutions. Certain features
of the new perspective on soliton equations, which will be introduced in
Chapter 5, begin to make their appearance in the latter part of Chapter 3. The
notion that one is finding solutions not just for a single equation, but for a
family of equations, is continually stressed.

In Chapter 4, a new hero emerges. It is the 7-function. In the earlier sections
of this chapter, I show how it is introduced as a potential function and as a
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natural consequence of the form of the conservation laws and symmetries. By
this stage it should be absolutely clear to the reader that one is dealing with an
infinite sequence of commuting flows and that = is to be considered as a
function of all the flow times {t.} as independent variables. The middle sections
deal with the Hirota formalism for constructing multisoliton solutions and pay
particular attention to the algebraic structure of the bilinear Hirota equations
which admit N-soliton solutions for arbitrary N. In particular, we show how the
existence of the N-soliton solution for arbitrary N of a particular Hirota
equation is equivalent to the existence of an infinite family of Hirota equations
of ascending degree to which the particular equation belongs, and which share
the same phase-shift function. The role of the phase-shift function in construct-
ing the infinite family is emphasized. Some of these ideas are quite new.
Following the discussion on the Hirota formalism, I introduce the reader in the
next section to the Painlevé property which all integrable systems appear to
enjoy. The connection of this important property, which gives an-easy-to-apply
test of exactly solvable systems, with the Hirota condition (the condition which
a given Hirota polynomial must satisfy in order that the corresponding bilinear
equation admits N-soliton solutions) is stressed. The last section in this chapter
introduces Backlund transformations, by which means more complicated solu-
tions can be built from simpler ones. It turns out to be particularly helpful to
express a Bicklund transformation in the form of 7, = €®¥ - 7,4 The operator
Y is very important. It is called a vertex operator.

Throughout the first four chapters, there has been a gradual change in
perspective. At first, one tends to think of the soliton equation as a nonlinear
evolution equation, a prescription which describes how a given function of a
space-like variable x evolves with respect to a time-like variable t. This is
certainly the point of view one takes when one applies the inverse scattering
transform, in which the evolution equation is clearly considered to be a Cauchy
initial-boundary value problem. However, as the various miracles of soliton
equations unfold, it becomes more clear that a given equation is best thought
of as a local relation between a function (or functions) of an infinite number of
independent variables and its various derivatives with respect to the indepen-
dent variables, a relation which is special because of some underlying algebraic
structure. Because the equation is local, there is no need to think of any one
variable as space-like and therefore particularly distinguished.

Based on these ideas, a new framework for viewing soliton equations is
introduced in Chapter 5. This is the longest chapter and deals with material
which should be new to all but a few experts in the field. I have avoided
expressing the new ideas in an excessively mathematical language or writing
style so I expect the reader to be able to hang tough. I start by pointing out the
role which the Wahlquist—-Estabrook method plays in identifying the underlying
algebraic structure of a given equation. In the cases of KdV and NLS, it turns
out that the phase space on which the soliton flows live is an infinite-
dimensional graded Lie algebra G =sl(2, C), the loop algebra Y7V X7 of
sl(2, C). The expression Y. X,{ ™ is simply a power series in which each of the
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coefficients X; belongs to sl(2, C) and can be represented in matrix form by
2x2 matrices of zero trace. The physicist will recognize that the Pauli spin
matrices can be used as a basis for this vector space. The algebra G can be
decomposed into two subalgebras and on the orthogonal complement of one of
them, which can be identified with the dual of the other and which is therefore
a Poisson manifold, there are natural Hamiltonian vector fields or flows. When
generated by a special sequence of functions, these vector fields are the soliton
equations. They are an overdetermined, infinite system of ordinary differential
equations in infinitely many independent variables {t,}5. When one wishes to
distinguish one of the independent variables, say t;, which we then call x, the
equations can be used to express the infinite number of dependent variables as
higher and higher x derivatives of the first members in the sequence. The
remaining equations then give the well-known AKNS hierarchy of soliton
equations, the first nontrivial member of which is the NLS equation. However,
it is equally permissible to choose t, as the distinguished variable x, in which
case one expresses the infinite number of dependent variables as x derivatives
of the first and second members of the sequence. The remaining equations then
give a new hierarchy of soliton equations; in this case it is known as the DNLS
(derivative nonlinear Schrédinger) hierarchy. In the sections in which these
matters are discussed, we also discuss the connections between the new
Hamiltonian structure which is naturally introduced with the algebra and the
old variational Hamiltonian structure familiar from previous chapters. At the
end of the section which outlines these ideas, I invite the reader to try (and
help him through) several exercises in which the equations for the harmonic
oscillator and finite Toda lattice with free ends are derived from this point of
view,

It also turns out that the form of the equations invites the introduction of
potentials which replace the infinite number of dependent variables. These are
the Hirota 7-functions (there are three of them for si(2, C), one “main” one
called 7, and two auxiliary ones o and p although we will see that this triplet is
best thought of as a sequential threesome p, 7, o in an infinite sequence {7,})
and in these new potentials, the evolution equations are the Hirota bilinear
equations. In this section we also introduce the generalized fluxes F, =
(6*/ot; 8t ) In = which play a very important role in the whole theory.

The later sections of this chapter go on to discuss gauge, Backlund and
Schlesinger transformations, the inverse scattering method and the Riemann-
Hilbert problem from a purely algebraic viewpoint and various other topics
which are linked under the unbrella of our new approach. I will wait till
Chapter 5 to discuss these things in more detail. At this stage, I want to discuss
in some more detail with you the impact of the soliton discovery and its
relation with other branches of physics. But before I do, there is one message 1
want to leave indelibly imprinted on your mind. The message is that soliton
equations are magic purely for algebraic reasons which have to do with the
structure of the equation as a very special relation between a function and its
various derivatives. No global properties are required to give it its special
significance.
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Further discussion. The soliton itself is a dramatic new concept in nonlinear
science. Here at last, on the classical level, is the entity that field theorists had
been postulating for years, a local travelling wave pulse, a lump-like, coherent
structure, the solution of a field equation with remarkable stability and
particle-like properties. It is intrinsically nonlinear and owes its existence to a
balance of two forces; one is linear and acts to disperse the pulse, the other is
nonlinear and acts to focus it. Before the soliton, physicists had often talked
about wave packets and photons, which are solutions of the linear time-
dependent Schrodinger equation. But such packets would always disperse on a
time scale inversely proportional to the square of the spread of the packet in
wavenumber space. Nonlinearity is essential for stopping and balancing the
dispersion process. In one dimension, the interplay between the dispersion and
focusing of wave packets is described by an equation,

2ig, + g +2g9°g* =0, (1)

the nonlinear Schrodinger (NLS) equation, which describes the evolution of the
envelope q(x, t) of a wavetrain as seen from a frame of reference moving with
the group velocity of the underlying carrier wave. It is a universal equation of
nonlinear physics and occurs in a huge variety of situations: in nonlinear optics
[19], in deep water wave theory [59], in the description of energy transport
along alpha-helix proteins [112]. Not only is it ubiquitous, but one can easily
give the recipe for the circumstances under which it will obtain.

Whereas the NLS was the first-born among soliton equations [21], it was the
celebrated Korteweg-deVries (KdV) equation

CIt + 6qqx + qxxx = 0: (2)

which fathered the soliton [12]. It, too, is universal. Tt describes how a
Riemann invariant, which, without other effects present, would travel undis-
torted along the straight parallel characteristics of a linear hyperbolic system
(think of the d’Alembert solution u(x, t) = f(x —t)+ g(x +1) to the linear wave
equation), slowly evolves due to the combined and cumulative influences of
nonlinearity and dispersion. In (2), x is measured with respect to a frame of
reference moving with the characteristic speed of the linear wave. In KdV, the
nonlinearity has the effect of inducing the wave to break, of introducing
convergence in the family of characteristics and thereby tending to cause the
formation of infinite spatial derivatives in a finite time. Dispersion, on the other
hand, mitigates the process by splitting the steepened front into a train of
pulses or solitons each of which, if standing alone, has the shape

q(x. t) = 2n*sech® n(x — x,—4n7%t). (3)

The KdV equation is also ubiquitous and, just as in the case of the NLS
equation, one can give the recipe for the circumstances under which it obtains.
It describes the evolution of shallow water waves, ion acoustic waves, long
waves in shear flows (see [120] for references) and a host of other situations
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which the reader can find listed in the various survey papers and proceedings
which are referenced.

Both the KdV and NLS equations arise as asymptotic solvability conditions.
Briefly stated, the phrase asymptotic solvability condition refers to a condition
on the leading order approximation to the solution of a more complicated set
of equations which ensures that the later iterates of the approximation remain
uniformly bounded. Other universal equations, also derived by this process and
which also admit soliton solutions, are the modified Korteweg—deVries
(MKdV) equation, the derivative nonlinear Schrodinger (DNLS) equation, the
three wave interaction (TWI) equations, the Boussinesq equation, the
Kadomtsev—Petviashvili (the two-dimensional KdV or KP) equation, the
Benjamin—Ono (BO) equation, the intermediate long wave (ILW) equation,
the Benney—Roskes-Davey—Stewartson (the two-dimensional NLS) equation,
the sine- and sinh-Gordon equations, the massive Thirring model, the Landau-
Lifshitz equation, the Gross—Neveu, the Vaks-Larkin-Nambu-Jona Lasinio
chiral field models.

‘What is remarkable, and still unexplained as far as I am concerned, is that so
many of the equations, derived as asymptotic solvability conditions under very
general and widely applicable premises, are also soliton equations. In other
words, why should an equation which is universal in physics also have such
marvellous mathematical properties? I will explain these properties in more
detail both in the next paragraphs and throughout these lectures, but one of the
key properties of a soliton equation is that it has an infinite number of
conservation laws and associated symmetries. It is certainly clear that, in
developing mathematical models for physical situations, one naturally includes
certain symmetries, like translational invariance, which discard the unnecessary
and focus on the essential features of the process under investigation. But why
should the process of finding the asymptotic solvability condition introduce so
many symmetries, most of which are hidden and not readily accessible to
physical interpretation? To stress the point: if one is given a hatful of equations
and asked to pick one at random from this hat, it is very unlikely that it would
be completely integrable. Yet in the hatful of equations that physics provides as
asymptotic solvability conditions, there would appear to be a disproportionate
share of ones with soliton properties. Can this be simply coincidence?

What do we mean by a soliton equation? All I have said so far is that a
soliton is a solitary, travelling wave pulse of a nonlinear partial differential
equation with remarkable stability and particle-like properties. 1 have hinted
that a true soliton, a solution to an equation with very special qualities, is much
more than a solitary wave. It is. Many equations admit solitary waves, namely
local, travelling wave solutions with nonlinear stability properties. For example,
if we change the Kerr or cubic nonlinearity in (1) to the saturable nonlinearity
—ig(1+2qq™) ! or the 64qq, term in (2) to 64°q,, there are still travelling wave
solutions which are neutrally stable to small disturbances. The solitary wave
solutions of soliton equations have additional properties, however. One prop-
erty is that two such solitary waves pass through each other without any loss of
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identity. For example, observe that the solitary wave (3) has an amplitude-
dependent velocity. Now, imagine that at some initial time, we start off two
solitary waves very far apart with the one to the left having the larger
amplitude and velocity. The larger one will eventually overtake the smaller.
The interaction will be very nonlinear and will not at all resemble the
interaction of two linear waves in which the composite solution is a linear sum
of the two individual waves. Nevertheless, after the nonlinear interaction, two
pulses again will emerge, with the larger one in front, and each will regain its
former identity precisely. There will be no radiation, no other mode created by
the scattering process. The only interaction memory will be a phase shift; each
pulse will be centered at a location different from where it would have been
had it travelled unimpeded. Whereas this interaction property is remarkable and
indeed often used as the test- of soliton equations, it is not, by itself, sufficient.
There are equations which admit solutions which are a nonlinear superposition
of two solitary waves but which do not have all the properties enjoyed by
soliton equations. A soliton equation, when it admits solitary wave solutions,
must admit a solution which is a nonlinear superposition of N solitary waves
for arbitrary N.

It is also exactly integrable in the sense of the infinite-dimensional extension
of a completely integrable Hamiltonian system. We say that a finite-
dimensional (2m variables) Hamiltonian system is completely integrable if it
admits m constants of the motion F,, i=1,..., m, which are independent and
in involution under the Poisson bracket associated with the Hamiltonian
structure and the level surface defined by the intersection of the surfaces F; = ¢;
is compact and connected. There is a theorem that says that such a system can
be canonically transformed (thereby preserving the Hamiltonian structure) to a
set of new coordinates, the action-angle variables in which the system is
completely separable. The action variables J,, 1 =i=m (which are functions of
the motion constants F;) are constant in time and the angle variables 6, change
linearly in time; i.e. 6; = w;t+a;, 1=i=m, q;, w; constant. As a consequence,
the motion must be quasiperiodic and take place on an m-torus, topologically
equivalent to the direct product of m circles. To date, all known soliton
equations have Hamiltonian structures and an infinite number of independent
motion constants in involution. There is also a canonical transformation (the
inverse scattering transform or IST, the nonlinear analogue of the Fourier
transform) which converts the soliton equation into an infinite sequence of
separated equations for the action-angle variables, each member of which can
be trivially integrated. In this way, one can, in principle, solve the Cauchy
initial value problem. It turns out that some of the action variables are the
soliton parameters; this is the reaspon that a soliton’s identity, namely the
parameters giving its shape, speed, -amplitude, internal frequency etc., is
preserved under collision. Other of the iction variables are connected with the
energy in each of the nonlinear radiation modes, the nonlinear analogue of the
continbum of Fourier modes of a linear system.

Contrast this behavior with what one would expect to be the behavior of a
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mechanical system with strong coupling between many degrees of freedom. In
general, one would not expect such a system to be separable. Consequently one
would also not expect to see the power spectrum of the time series of any one
of the dependent variables to consist of m distinct frequencies, as it would for
example if it were a completely integrable Hamiltonian system with a compact
Hamiltonian. On the contrary, one would expect there to be at least some
spectrum broadening indicating stochastic, although not necessarily ergodic,
behavior. Indeed, the second great discovery of the last decade, referred to in
the opening paragraph, is the realization that one can have stochastic time
dependence in systems with few degrees of freedom. What counts is the
qualitative nature of the system of equations and not the dimension of the
system. If the equations are such that solutions depend sensitively on initial
conditions, then small errors in initial data are exponentially magnified by the
flow to the point where it becomes completely impossible to predict the future
state of the system. Even dissipative systems, in which a given volume in state
space contracts under the flow, are not immune. It turns out that for systems of
ordinary differential equations of dimension three or greater (e.g. the Lorenz
and Rossler equations), for two-dimensional invertible maps (e.g. the Henon
and Ikeda maps) or for one-dimensional noninvertible maps (e.g. the logistic
equation Xx,,;=ux,(1—x,) whose fascinating self similar structure in u,x
space was uncovered in the pioneering work of Mitchell Feigenbaum), the
motion can take place on a new kind of attractor (as contrasted to the old types
which were either a fixed point or a limit cycle) called a strange attractor. The
attractor is called strange not simply because of its structure (locally it can be
thought of as a direct product between R", n=1,2,3, ... and a Cantor set) but
because motion on it depends sensitively on initial conditions. Indeed, there is
reasonable hope that in some cases the apparent stochastic time dependence of
systems with many degrees of freedom may be explained by the motion of the
state space point on a strange attractor whose dimension is much smaller.
Experimental evidence for this hope can be found in reference [123).

This digression on nonintegrable systems was intended to emphasize as
strongly as possible the point that in order for an equation to be completely
integrable it must have very special properties. Note that solutions of integra-
ble systems do not depend sensitively on initial conditions. Initial errors are
magnified in time by at most a linear rate. Before the soliton equations, the
number of completely integrable systems could be counted on one hand. The
most quoted were the harmonic oscillator, the motion of a body under a central
force field and rigid body motion. Indeed the only other infinite dimensional,
exactly solvable model in physics was not derived from Newtonian mechanics
at all. Rather, it was the two-dimensional, nearest neighbor Ising model of
equilibrium statistical mechanics, a model suggested in order to study phase
transitions. In a celebrated tour de force, Onsager calculated the partition
function by a series of ingenious and apparently miraculous steps. In what
surely must be considered as a totally unexpected development, there appears
to be a deep connection between soliton equations and the exactly solvable



INTRCDUCTION Xiti

models of equilibrium statistical mechanics and quantum field theory. More
about this later.

Unfortunately, the exactly integrable feature is not easy to determine a priori
from the equation itself. Therefore, it is useful to search for other properties
characteristic of soliton equations, which may be more readily applied to a
given equation as a test for integrability. It is also instructive to find out what
happens to these properties as the soliton nature of an equation is destroyed
either by the addition of terms or by changing some of the crucial coefficients.
It is to be expected that such a perturbation will give rise to some stochastic
regions in the phase space, particularly in the neighborhood of homoclinic or
heteroclinic orbits. If the perturbation is small, one would expect that a
Kolmogorov—-Arnol’d-Moser (KAM) type result would hold (although, for
infinite dimensional systems, this has not yet been proved). Recall that in a
completely integrable Hamiltonian system with a bounded Hamiltonian, the
motion takes place on an invariant m-dimensional torus parametrized by the m
values of the action variables. The KAM theorem says that under small
perturbations most of these tori are preserved. There are, however, thin
stochastic regions between these tori. One might ask now this feature is
manifested in the breakdown of other properties of soliton equations. Further-
more, one might also use these ideas to characterize turbulent or stochastic
behavior in the other models in physics, models which when unperturbed are
exactly solvable like the Ising model, and which are intimately connected with
soliton equations.

While many of the special properties of soliton equations will be discussed in
these lectures, there are two I want to mention in the present discussion. The
first of these is the Hirota property and is due to Hirota, who discovered a very
useful and important method for calculating multisoliton solutions. One re-
quires that the equations be written in bilinear form, a step which is achieved

for (2) by writing ,

d
q(x, t)=2§ln'r 4

but for which (step) there is no general algorithm. The function 7(x, t) satisfies
a quadratic equation
Ty = TyTy + Thex = BTy Tyax + 3720, = 0. (5)

Hirota developed a new calculus for these equations in which the derivatives
d/at, 0fox are replaced by derivative-like operators D,, D, ; in this notation the
quadratic equation (5) can be written

P(D, D)7 -vr=(DD,+DH7-7=0, (6)

with P a polynomial in its arguments. From this equation, it 1s fairly
straightforward to determine the conditions (the Hirota conditions) which the
polynomial P must satisfy in order that the equation admit N-soliton solutions
for arbitrary N. For P(D, D,)= D,D, + D? (the KdV equation), or P(D,, D,)=
D.D, + D% (the Kotera—Sawada equation), the Hirota conditions are satisfied.
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For P(D, D,)=D,D, + D%, they are not and only two-solitary wave solutions
can be found. The same conditions on P admit a related class of solutions, the
infinite sequence of rational solutions, for each of which the function 7 is a
polynomial in x and t and for which the corresponding solution q is a rational
function. The first three nontrivial rational solutions of (5) are r=x, 7=
x>+12t, 7=x°+60x*t—720t>. The corresponding solutions gq(x,t) have
double poles of strength —2 at each of the zeros x =x(t) of 7(x, 1).

The existence of these rational solutions is equivalent to another property
enjoyed by soliton equations, the Painlevé property. This property was origi-
nally introduced in connection with second order nonlinear ordinary differen-
tial equations. The goal was to classify all second order equations whose
solutions had the property that the only moveable singular points were poles.
This means that the only singularities whose positions depend on initial data
are pole singularities. For example, the solution of dy/dx=—y?, y(0)=1/c is
y(x)=1/(x + ¢} and has a pole at x = —c. On the other hand the points x =0, e«
are fixed critical points for the equation 2x dy/dx = y. Painlevé found that there
were fifty equation types satisfying this requirement, consisting of forty-four
which were reducible to knmown equations and six new equations whose
solutions are called Painlevé transcendents. The second equation in the list of six
is

Vex = Xy +2y7, 7

about which a lot more will be said in Chapters 4 and 5. For now, the salient
point is that (7) admits the solution

'y:

+ an(x—xo)", ®)

0

in which x, and a, are arbitrary and all other a,’s arc uniquely determined.
The equation that determines a; reads 0 - az =0, the zero on the right-hand
side arising as the result of just the right combination of terms in (7). If the xy
were replaced by x?y or the y*® term by y* (which would require the leading
order term to be a second order pole), there would be an incompatibility in the
equations for the {a,} which would necessitate the introduction of a term
proportional to (x —xo)" In (x —xo). The equation would not then have the
Painlevé property, for the arbitrary initial point x, would no longer be a pole
singularity.

What is remarkable is that all integrable equations appear to have the
Painlevé property although the idea has to be modified somewhat when applied
to partial differential equations. It also appears to be exactly equivalent to the
existence of an infinite sequence of rational solutions. Note in our example that
if 7 has a Taylor expansion about a point on the surface on which it vanishes,
then q has a polar expansion. The Painlevé property in the language of the
7-function then seems to demand that the function 7 has no moveable critical
points.
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This observation is significant and has potentially important consequences
not only in the context of evolution equations but also for other exactly
solvable models. T have mentioned already that there appears to be a connec-
tion between the nearest neighbor, two-dimensional Ising model and soliton
equations. This connection was first established by the work of Sato, Miwa and
Jimbo {103] who showed that, in the scaling limit, the n-point correlation
function satisfies a system of very special nonlinear deformation equations
which express the fact that the monodromy group of an associated linear
system is preserved. Concretely, consider the linear nth order system

aw .
C—d?—(lAﬂT B+CO)W

in which the n-point correlation function T appears in the matrix coefficients A,
B, C. This system has irregular singular points at £ =0, c. The condition that
the monodromy group of this system is independent of the arguments of the
n-point correlation function forces the latter to satisfy a nonlinear deformation
equation. The solution to this equation can be constructed, in principle, by
using the isomonodromy property. In this way, closed form solutions for the
n-point correlation can be found [103]. This remarkable construction closely
parallels the construction of solitons and other special types of solutions of
soliton equations. In particular, the two-point function (in the scaling limit)
satisfies the same equation as the one phase self-similar solution of the
sinh-Gordon equation. In addition, there are further suggestive connections
between Ising models and integrable systems. For example, McCoy and Wu
[109] have shown that at the critical temperature, the two-point correlation
function as function of the discrete separations satisfies an exactly integrable,
discrete version of the Toda lattice.

If indeed it turns out that one can establish the exact connection between
soliton equations and other integrable models, it seems natural to ask about
turbulent or stochastic behavior in the latter. One measure of the loss of
integrability in the former is the loss of the Painlevé property. Indeed Greene
and Percival [110] have shown how in differential equation models exhibiting
stochastic behavior the poles pile up in the complex time plane along natural
boundaries (which themselves appear to have interesting self similiar behavior).
As additional evidence, Segur [111] showed that for the very special choice of
parameters in the Lorenz model for which the Painlevé property holds, the
model is integrable.

What is likely to happen, then, in a nonintegrable model of statistical
physics? In principle, the partition function, the free energy and the correlation
functions are all defined. The most natural conjecture to make is that the
correlation functions as functions of their arguments (recall they are analogous
to the Hirota 7-function) do not have the Painlevé property and instead have
algebraic and essential singularities which depend on data. The functions would
then behave in a wildlv erratic manner near these singularities with the result
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that a small lack of precision in the knowledge of the input data point
would lead to catastrophic error.

In summarizing this discussion, let me again emphasize two points. The first
is that the algebraic properties of solvable models are the unifying element and
the second is that there is much to be gained by understanding the connections
between soliton equations and their solvable cousins of statistical and quantum
physics.
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CHAPTER 1
The History of the Soliton

1la. John Scott Russell’s discovery. The discovery of the soliton, its re-
markable properties and the incredible richness of structure involved in its
mathematical description, occurred in two stages and over a period of almost
one hundred and forty years. The story begins with the observation by John
Scott Russell of “the great wave of translation™. 1 shall let himself tell of the
incident.

I believe I shall best introduce this phenomenon by describing the circumstances of my own
first acquaintance with it. I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped—not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined
heap of water. which continued its course along the channel apparently without change of
form or diminution of speed. 1 followed it on horseback, and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one
or two miles T lost it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon which I have called the
Wave of Translation, a name which it now very generally bears [1].

If the hallmark of a great scientist is his or her ability to recognize what is
essentially new, and it surely must be one of the key qualities, then Russell
must be accorded this appellation. From the very first sighting, he was
convinced that what he had observed was a new scientific phenomenon and
thereafter he spent a major portion of his professional life carrying out
experiments to determine the properties of the great wave.

This is 2 most beautiful and extraordinary phenomenon: the first day I saw it was the happiest
day of my life. Nobody had ever had the good fortune to see it before or, at all events, to
know what it meant. It is now known as the solitary wave of translation. No one before had
fancied a solitary wave as a possible thing. When [ described this to Sir John Herschel, he said
“It is merely half of a common wave that has been cut off””. But it is not so, because the
common waves go partly above and partly below the surface level; and not only that but its
shape is different. Instead of being half a wave it is clearly a whole wave, with this difference,
that the whole wave is not above and below the surface alternately but always above it. So
much for what a heap of water does: it will not stay where it is but travels to a distance [2].

He knew that it was a fundamental mode of propagation in the sense that an
arbitrary heap of water would disintegrate and resolve itself into a primary and
residual wave. He knew that its velocity was proportional to its height and
proposed after much experimental work the law ¢?> = g(h + 1) where g h and 5
are gravity, the undisturbed depth and the maximum height of the wave, as
measured from the undisturbed level, respectively. He knew that waves of

1
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depression behaved differently from waves of elevation and produced no
permanent travelling forms. He knew about the interaction of solitary waves
but does not appear to have noticed their soliton quality, a property I will
discuss shortly. Indeed, if he had applied the reversibility property of the Euler
equations and the fact that two waves would become infinitely separated as
t — +o, he could have inferred this truly remarkable feature. He also knew
about the strange and uniquely nonlinear reflection properties of slightly
oblique waves.

He also knew how to create them! I was recently privileged to attend a most
enjoyable and well-organized conference at Heriot—Watt University celebrat-
ing this great man’s work on the hundredth anniversary of his death. It was a
grand occasion, filled with lively talks and stimulating discussions and involving
an international array of scientists from at least a dozen different disciplines.
The highlight of the meeting was to be the recreation of Russell’s experience at
the same spot on the Union canal where the original incident took place. I am
not proud to admit that we failed, that with all our combined knowledge and
experience, we were not able to improvise the means to create the wave when
the engine of the powerful motorboat, which had worked so well in trial runs,
failed the day before the event. The man himself used to do it on a regular
basis, with a couple of horses, a couple of ropes, an old barge and a great
intuitive understanding of how to transfer the momentum of the boat to the
water. Standing on the bank, watching the efforts of swarms of eager young
scientists charging along the canal in the role of large horses, one could see
many a glass raised in silent respect.

Nevertheless, despite the setback of that day, there is not a soul now living
who does not believe in the great wave, for the experiments of Russell have
been repeated under carefully controlled circumstances and his predictions
verified. It was not always that way, however. At first, Russell’s ideas faced
great hostility and scepticism from the leading lights in the scientific community
of his day. Both Airy and Stokes questioned whether a wave which travelled
without change in shape could be totally above the water and cited the
diminution of amplitude as an indication that the wave was inherently nonper-
manent. Russell had suggeted (correctly) that this failure was due to friction. In
fact, Stokes “proved” in his 1849 paper through the use of a small amplitude
expansion of a sinusoidal wave, that the only permanent wave is basically
sinusoidal with the nonlinear terms modifying the shape (the second and higher
harmonics) and the speed (it becomes weakly dependent on amplitude). What
he had discovered, of course, was the other limit (the modulus of the elliptic
function tending to zero rather than one) of the general cnoidal wave solution to
the equations of motion. Later on, Stokes was to recognize and admit his
errors. It is somewhat ironic that the wave which Stokes discovered (the Stokes
wave) is itself unstable when the ratio of depth to wavelength is approximately
one (this ratio is small for the solitary wave). In deeper water, an almost
monochromatic wave train of the type he described breaks up into a series of
wavegroups.
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It was not till the 1870’s that Russell’s work was finally vindicated and its
scientific importance can be measured by the eminence of the men who did the
job. Independently, Boussinesq [3] (1872) and Rayleigh (1876) found the
hyperbolic secant squared solution for the free surface. Boussinesq’s 1872
paper in fact did a lot more and introduced many of the ideas used nowadays
by modern analysts. In particular, he found the conserved density of the third
conservation law, a quantity he called the moment of instability. He derived his
solution from the approximation to the water wave equations that now bear his
name. In this approximation, the motion can be still bidirectional® but the basic
idea of the balance between nonlinearity and dispersion is present. It was left
to Korteweg and deVries in 1895, who apparently did not know the work of
Boussinesq and Rayleigh and who were still trying to answer the objections of
Airy and Stokes, to write down the unidirectional equation which now bears
their names. (It would appear to have been the thesis project of deVries.)

In this first stage of discovery, the primary thrust was to establish the
existence and resilience of the wave. The discovery of its universal nature and
its additional properties was to await a new day and an unexpected result from
another experiment designed to answer a totally different question.

1b. Fermi-Pasta-Ulam. The scene now changes. It is almost sixty years
later and six thousand miles away. The place is Los Alamos and the principals
are Enrico Fermi, John Pasta and Stan Ulam. The question of interest was:
why do solids have finite heat conductivity? The solid is modelled by a
one-dimensional lattice, a set of masses coupled by springs. In 1914, Debye
had suggested that the finiteness of the thermal conductivity of a lattice is due
to the anharmonicity of the nonlinear forces in the springs. If the force is linear
(Hooke’s law), energy is carried unhindered by the independent fundamental
or normal modes of propagation. The effective thermal conductivity is infinite;
no thermal gradient is required to push the heat through the lattice from one
end to another and no diffusion equation obtains. Debye thought that if the
lattice were weakly nonlinear, the normal modes (calculated from the
linearized spring) would interact due to the nonlinearity and thereby hinder the
propagation of energy. The net effect of many such nonlinear interactions
(phonon collisions) would manifest itself in a diffusion equation with a finite
transport coefficient. This suggestion motivated Fermi, Pasta and Ulam (FPU)
[5] to undertake a numerical study of the one-dimensional anharmonic lattice
on the Maniac I computer at Los Alamos. They argued that a smooth initial
state in which all the energy was in the lowest mode or the first few lowest
modes would eventually relax to a state of statistical equilibrium due to
nonlinear couplings. In that state, the energy would be equidistributed among

! The equation I refer to is (2.14) with D =1 which is bidirectional. In actual fact, Boussinesq
simplified the RHS by replacing F, by —F, and F,, by —F,, which imposes the unidirectional
approximation. His name, therefore, is associated with (2.26), which is bidirectional but does not
describe two directional water waves, rather than (2.14).
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all modes on the average. The relaxation time would then provide a measure of
diffusion coefficient.

The model used by FPU to describe their one-dimensional lattice of length L
consists of a row of N—1 identical masses each connected to the next and the
end ones to fixed boundaries by N nonlinear springs of length k. Those springs
when compressed or extended by an amount A exert a force

F=k(A+a A? (1.1)

where k is the linear spring constant and «, taken positive, measures the
strength of the nonlinearity. The equations governing the dynamics of this
lattice are

My = k(Y1 =2y + i) Ha(yi: — ¥i-p))s i=12,...,N—1,
Yo=¥yn=0, (1.2)

y; being the displacement of the ith mass from its equilibrium position.

FPU usually took the energy to be in the few lowest modes of the corres-
ponding linear problem. In the linear problem, the energy in each mode would
persist unchanged forever and no new mode would be excited. In the nonlinear
problem, the energy flows from the low modes to higher ones, and FPU
expected this to continue until the energy became equidistributed over all
modes accommodated in their numerical scheme. With 64 points in x-space,
they had 64 different modes over which they hoped to see the energy
distributed. The observed evolution could then serve as a model of thermaliza-
tion for more complicated physical systems.

Now a great surprise was encountered—at least it seemed to surprise
everyone who was involved in this problem or heard of it. The energy did not
thermalize! In fact, after being initially contained in the lowest mode and then
flowing back and forth among several low-order modes, the energy eventually
recollected into the lowest mode to within an accuracy of one or two percent
and from there on the process approximately repeated itself. FPU knew the
phenomenon was not an example of Poincaré recurrence, the time for which,
in a system of 63 independently moving masses, would be enormous.
Rather, the system seemed to behave like a system of linearly coupled
harmonic oscillators whose motion on a torus is quasiperiodic. (If the two
fundamental frequencies were w4, @, and w;/w,=mfn with m, n integers and
relatively prime, then the initial state would recur approximately after a time
27n/w,.) But how could this be? Why didn’t the nonlinearity excite all the
Fourier modes? Could the answer be that the system, when viewed in the right
coordinates, was equivalent to a separable system of harmonic oscillators?

The FPU experiment had failed to produce the expected result and indeed
the results it did produce challenged, as did the Michelson—-Morley of the
previous century, the basic thinking of physicists of the day. Nevertheless, since
it was not connected with what was regarded at that time as frontier physics
(little has changed in this regard today), it could easily have been dismissed, as
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it was by many, as an anomalous curiosity. Other promising starts on unex-
pected nonlinear behavior sputtered out. For example, in 1962 Perring and
Skyrme found a two-soliton (two-particle elastic collision) solution for the
sine-Gordon equation which they were using as a model for a nonlinear meson
field theory. These exact solutions, which display a nonlinear superposition
principle, could have made contact with the work of Backlund and Bianchi who
invented in the latter part of the nineteenth century a general scheme for
constructing multisoliton solutions for the sine-Gordon equation which
emerges in the theory of surfaces of constant negative curvature. Clearly the
equation had very special properties, but Perring and Skyrme did not follow
the lead.

Fortunately, the curious results of the FPU experiment were not ignored by
all. The moment and opportunity were seized by two applied mathematicians
at Princeton University, Martin Kruskal and Norman Zabusky. They set out to
understand the abnormal, and in doing so discovered the soliton and a
wonderful new world of nonlinear behavior which today has captured the
imagination of scientists from every physical discipline and has given a renewed
life and richness to many previously discovered mathematical structures.

1c. Kruskal, Zabusky and discovery of the soliton. Kruskal and Zabusky
(KZ) [6}H10] approached the FPU problem from the continuum viewpoint.
They argued that since the energy was contained in the lowest modes of the
system, the displacement of neighboring masses differed by O(h/L) and there-
fore one could define a contintum displacement y(x, t) where y(ih, t)=Yy,.
Expanding the displacements ¥;.;, y;—; in a Taylor series, setting kh2/m = ¢,
2ah =€, h?/12€ = &2, one finds that (1.2) becomes

Yee = € Vax = EC Y Yrx + EC€7 8 Yyxxns (1.3)

where terms of order £ have been ignored. The parameter ¢ is small. As we
shall see, it is crucial to retain the second term on the right-hand side, the
fourth-order derivative, in the approximation to the second-order difference.
Since FPU solved the equations by a centered time difference, it is also strictly
necessary to include a y,,,, term, but since to a good approximation y; = ¢*y,ux
this inclusion will only change the size of §°. Because the numerical scheme
had to satisfy the Courant-Friedrichs—-Lewy condition, the sign of 87 is not
changed.

How does one analyze (1.3)7 It is clear that for times and distances of order
one, the solution behaves as if it satisfies the linear wave equation. An initial
profile decomposes into right and left going components, each of which would
travel undisturbed if it were not for the cumulative effects of the nonlinear and
dispersive terms on the RHS of (1.3). How does each of these components
evolve under these new influences? To see this, KZ looked for solutions of
(1.3) in the form

y(x, ) =& T)+eyP(x, )+ - - -, (1.4)
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where £—=x—ct, T=¢t, and the dependence of f on T describes how the
profile f(£, T') evolves over long distances and times of order 1/&. The equation
for y® reads

V= ?y3 = 2cfpr + fefye + € 8% figee (1.5)

The solution y*¥ will grow linearly with £ =x+cf and the asymptotic series
(1.4) will be rendered nonuniform over long times unless the dependence of f
on T is chosen to make the right-hand side of (1.5) zero. Setting 6q=f,,
7= cT/2, one finds

a, +64q; + 8°qe; =0, (1.6)

the Korteweg—deVries (KdV) equation. The hyperbolic secant squared solution
(8%=1) with parameter 7,

q=2mn” sech® n(é—v7), (1.7)

the infinite period limit of the cnoidal wave periodic solutions, corresponds to
the solitary wave seen by Russell.

At this point, it should be clear why it was necessary to introduce the second
approximation to the finite difference y;., —2y; +y;—;. If 82=0, equation (1.6)
has solutions which develop discontinuities in a finite time. For example, take
as an initial condition g(& 0)=_%ma cos 27¢é which corresponds to the initial
conditions y(x, 0)=a sin 27x, y,(x,0)=0 (remember, since y,(x,0)=0, only
half the initial profile goes right). The maximum negative slope g, increases
monotonically from —%a/3 at t=0 to — at t=1/7w"aec. Thus the naive
continuum approximation to (1.2) breaks down. For 87 finite, but small, a
different picture emerges. Figure 1, taken from the famous 1965 paper [6] of
Zabusky and Kruskal announcing the soliton, shows the results of the KZ
numerical experiment in which they use a centered difference, mass and
(almost) energy conserving scheme to solve the KdV equation (1.6). They used

30
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F1G. 1. The temporal development of the wave form q(x) (from [6]).
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periodic boundary conditions and their starting profile was sinusoidal. Initially
the negative slope steepens, then the third derivative term causes fine structure
wiggles of wavelength 8 to appear near and to the left of the maximum of g
(see Fig. 1, profile B). In time the wiggles separate, forming a train of pulses
travelling to the right, with the largest on the right, each pulse seeming to take
on a life and identity of its own and having a velocity proportional to its
amplitude. These pulses each may be approximately described by the solitary
wave solution (1.7) although strictly this is a solution valid for an isolated pulse
on the infinite line. Because of the periodic boundary conditions, the solitary
pulses eventually reappear on the left boundary and due to their higher
velocity, the larger pulses overtake the smaller ones. At this point, the
investigators noticed a remarkable phenomenon. Whereas during the interac-
tion two pulses behaved in a most nonlinear way, afterwards they reappeared
with the larger one in front, each bearing precisely its former identity (height,
width and velocity). The only evidence of a collision at all was a phase shift
whereby the larger one appeared to be ahead of the position it would have
been had it travelled alone and the smaller one behind. If the two pulses were
almost equal, the interaction seemed to take place by an exchange of identities
in which the forward and smaller soliton became taller and narrower when it felt
the leading edge of the larger one which then, in turn, took on the identity of
the smaller one. If the two pulses were of greatly different amplitudes, the
larger one rode over the smaller one in an adiabatic fashion. For amplitude
differences in the in-between range, the interaction was more complicated. In a
later analysis of the interaction Lax [14] (1968) verified these observations
rigorously.

The pulses were very special indeed. They deserved and got a special name,
the soliton, a name intended to connote particle-like qualities. After many
passes through the grid, the solitons arrive once again at the same relative
spatial positions, approximately produce the fine structure wiggles and then a
gradually decreasing negative slope until the initial sinusoidal shape is almost
recovered. This process is the mirror image (in both time and space) of the
original break up of the initial shape. The time at which the pulses coalesce is
called the recurrence time. The reason for the “almost recurrence” in such a
short time is that the initial profile decomposes into relatively few soliton
shapes. The approximate recurrence time is the minimum time for pulses with
different constant velocities (one can improve the calculation by including the
phase shifts) to arrive once again at a common point on a circle of length L.

This picture is only an approximation to the exact solution for two reasons.
First, as found by later work (ca. 1976), for an initial profile which is analytic in
£, the solution of (1.6) under periodic boundary conditions may be approxi-
mated by the so called finite-gap potential solution which is given by the second
logarithmic derivative of the Riemann ® function of vector arguments k£ + wyr,
i=1,..., N, where N is the number of degrees of freedom. This is equivalent
to saying that for a smooth initial profile most of the energy goes into relatively
few soliton states. For large N, the gap widths are exponentially small. f N=1,
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the © function becomes a periodic elliptic function
2 a—y 2
46 1=+ (e~ B) e { /= ¢ -2a+B+ ) m?}

where m?=(a—B)/{(a—v), «>pB >y and we have taken 8*=1. The infinite
period limit, m?— 1, is (1.7) with « = 21* when we impose the condition that
q— 0 at x =+, Second, whereas the solution is periodic in £ (because the
initial profile is), it is only quasiperiodic in the time 7 since the w;’s are not in
general commensurate. A measure of the “recurrence” time, therefore, is
found by taking rational approximations to the frequencies corresponding to
these modes (gaps) containing significant energy. The exactness of the recurr-
ence is then a function of the number of modes included and the chosen
accuracy of the rational approximations to the frequencies.

In any event, the strange interaction properties of the solitons together with
the almost recurrence property seemed more and more to indicate that, in
some sense, the KdV equation was integrable. If this were the case, there
should be lots of conserved quantities. However, the connection with Hamilto-
nian systems was far from uppermost in the minds of the investigators and the
motivation for the search for conservation laws came from a different direction.
Before I describe that, it is worth noting, as Zabusky has often stressed, the
important and seminal role that numerical experimentation played in these
discoveries. (I strongly recommend his article [10].) This was the first time in
scientific history that investigators had this tremendous new power available to
them. Indeed in the last few years we have seen continuing evidence that this
mode of research, a combination of analysis and numerical experiment, is
becoming increasingly more important in scientific discovery. The strange
attractor, a new and fundamental concept in dynamics, and central to our
current understanding of certain kinds of turbulence, was also discovered this
way.

Now a caveat. The fact that two solitary waves of an equation preserve their
form through nonlinear interaction is often taken to be both the acid test for
and the definition of the soliton. I want to warn the reader that this condition is
only necessary. There are equations (for example, in (1.54) replace D% by D%)
which admit two-phase solitary wave solutions, and therefore the asymptotic
form of each individual solitary wave is preserved through collision, which do
not possess all the ingredients for admission to the soliton class. The proper
definition of a soliton involves its identification with certain of the scattering
data of an eigenvalue problem. This we discuss in the section after next.
Nevertheless, the computational test of colliding two solitary waves together to
check their interaction behavior is still a very useful one. A better test is not
only to collide a solitary wave with another one but also to test its resiliency
under interaction with other special but local solutions of the equation. In the
case of KdV, one might, for example, collide a solitary wave with a wave of
depression.
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1d. The conservation laws and the Miura transformation. The next step
forward in the series of discoveries came about as the result of an attempt to
describe the solution to (1.6) when 87 is small by averaging over the wiggly fine
structure parts of the solution. This procedure would not be valid for all time,
of course, and certainly things would be modified when the fine structure
separated out into the well-defined soliton train of Fig. 1(C). Nevertheless, it
might allow one to investigate the fascinating reversible-shock-like nature of
the portion of the solution where ¢, 1s large. By analogy with gas dynamics,
therefore, it was important to find conservation laws in order that the jump
conditions across the wiggly regions could be calculated. One would need four
such pieces of information (the number of characteristic velocities entering or
leaving the shock plus the position of the shock itself) as opposed to the usual
three of gas dynamics. Two conservation laws

q. +(39° +8%q,,), =0, (1.8)
(q°), +(2q°+8%*(qa,. —392). = 0, (1.9)

corresponding to conservation of mass and momentum (1.8) and energy (1.9)
for water waves and to conservation of momentum and energy for the
nonlinear spring, were already known; Whitham, who had developed a power-
ful theory for investigating modulated periodic waves about this time, had
found a third, the conserved density, which corresponded to Boussinesq’s
famous moment of instability. Zabusky and Kruskal searched for and found a
fourth, and their method of search (finding equations for the coefficients of all
terms of degree 4, 5, 6, etc., degree g =1, degree 9/dx =3) indicated that the
equations for the coefficients at stage 6 were overdetermined (as they are
thereafter) and, therefore, they were not particularly surprised when they did
not find a conservation law at this level. However, they had made an algebraic
mistake, and more than a year was to go by before they continued again on this
track.

The next surge of morhentum came with the arrival of Robert Miura who
was asked by Kruskal to get his feet wet by searching for a conservation law at
level seven. He found one and then quickly filled in the missing sixth. Eight
and nine fell quickly and Kruskal and Miura were fairly certain that there was
an infinite number. However, rumors originated from the Courant Institute
that nine was the limit. (In fact, what investigators there had discovered was
what they perceived to be a change in algebraic structure.) Miura was therefore
challenged to find the tenth. He did it during a two week vacation in Canada in
the summer of 1966. (There is also a rumor that he was seen about this time in
Mt. Sinai, carrying all ten.) It was now clear that there was a conservation law
at every level. (Each conservation law has the form (aUjat)+(8Fjox)=0; U,
called the conserved density and F, the corresponding flux, can be assigned a
weight by adding the power of g to half the number of &§(d/dx) operations in
each term in these quantities. For example, q has weight one, 3¢g* and §°q,,
both have weight two, 2q°, 8°qq,, and 8q2 all have weight three and so on.
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Level then refers to the weight of the conserved density.) How to find them
and what kind of constraints they would impose on the solution of the KdV
equation were thoughts that ran through the minds of the investigators. The
original motivation for looking for conservation laws was temporarily put aside.
There were suddently too many independent laws and the jump conditions
(Rankine-Hugoniot relations) derived from these laws would have to be
consistent with each other. Somehow, with all the new discoveries, the question
did not seem to be quite as important as before.

For that matter, it is still not understood why a solid has finite heat
conductivity!

Miura provided the next key [11]. He had found that the modified
Korteweg—deVries equation (MKdV)

v,+ 6070, + v, =0 (1.10)

also had an apparently infinite string of conservation laws. He observed that
they could be matched with their corresponding counterparts in the KdV series
by the transformation (which now bears his name)

q=v>—iv,. (1.11)
From this point on, we will write x, t for £ 7 and take 8§2=1. In fact, he
showed that

3
g, + 649G, + Gz, = (2v— ia)(vt +60%y, +v,,,), (1.12)

and therefore if v(x, t) is a solution of (1.10), g(x, t) is a solution of (1.6). Next,
since (1.11) is a Riccati equation, the Miura transformation can be linearized

by
.y
oix, t)=—i— (1.13)
¢
to the Schrodinger equation with zero energy
b
=—— (1.14)
177

The Galilean invariance of (1.6) suggests that nothing is changed by adding a
constant velocity A to g, whence (1.14) becomes

G t (A +qlx, 1)) =0, (1.15)

the stationary Schrédinger equation with potential V(x)=—q(x;t) and energy
E = A. (Remark: The time variable in the time-dependent Schrodinger equa-
tion has nothing, repeat nothing, to do with the time r in the KdV equation.)
The ingredients for what was to become the inverse scattering transform (IST)
were now all there. By this stage, both Gardner and Greene had joined in the
effort.
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Before 1 relate this part of the story, it is worth describing Gardner’s
modification of the Miura transformation as it automatically includes A and
gives rise to the important idea that an infinite number of conserved quantities
of one equation can be inferred from one conserved quantity of another if their
solutions are related through a special kind of transformatton (an example of a
Bicklund transformation). Gardner took

q=w+isw, +e’w? (1.16)

and found the equivalent relation to (1.12) to be
0
q,+6qq, + G = (1 +2&*w +ie (,}—)(wt +6(w+e2wHw, +w.). (1.17)
X

Now, linearize (1.16) with

1 iy
B 1.18
WT282 £ ¢ ( )
whence (1.16) becomes
¢xx+(q +—1—2)¢=0. (1.19)
4e

Also solve w as function of q and its derivatives as an asymptotic series in € for
small £ (we shall see later that the asymptotic expansion of ¢ for large A is
very important in the theory) and find

w=q—ieq, —€(g+q)+ - . (1.20)

Since | wdx is a constant in time when the integral is taken over the infinite
line (assuming q and its derivatives approach zero as x — +=) or the periodic
interval, so are Jqdx, [q>dx [(q*—3q2) dx, etc. One can also capture the
infinite set of conservation laws for KdV from the first one for the equation
w,+6(w+eZwHw, +w, , =0.

le. The inverse scattering transform [12]. Given (1.15), it was now
natural to ask: if the potential —q(x, t) evolves according to the KdV equation

ql +6qqx + qxxx = 01 (1.21)

how do A(2) and &(x, t) evolve? We consider the whole real line —wo< x <co,
with q and its derivatives vanishing at £+ This can be done by substituting q
from (1.15) into (1.21). One finds by direct calculation that

A+ (90, — 4,0), =0 (1.22)

where Q= ¢, + ... —3(A—q)d,. If ¢ vanishes as x — +o0 and is square inte-
grable, then A, =0. Thus the discrete eigenvalues A, <0, n=1,2,...,N of
(1.15) are constants of the motion. From the remaining part of (1.22) we find

dx
12

by + e~ 3 — @), = Cob +D¢>j ; (1.23)
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and since ¢ vanishes at +co, D = (. We choose to normalize the bound state
eigenfunction ¢, so that ¢, ~exp (vV—A,x) as x — —co, Thus C, =4(—A,)*?,
and if ¢, ~ b, (t) exp (—V—A, x) as x —> +ox,

b,. = 8(—A,)*"*b, (1.24)

and b, (t)=b,(0) exp (8(—A,.)*?*t). For A ={2>0, a solution of (1.15) for large
|x| is a linear combination of e***. We impose on ¢ the boundary conditions

d~eF+ R t)e™ as x-—oo, (1.253)
~T(L, t)e ™, X —> —o, (1.25b)

In the usual quantum mechanical interpretation of (1.15), the coefficients of
unity in (1.25a) and (implied) zero in (1.25b) indicate prescribed steady radia-
tion coming from x =zco only. The coefficients of transmission T(Z, t) and
reflection R(Z, t) will be shown in Chapter 3 to satisfy |T|?+|R?=1. The
spectrum for A >0 is continuous and we may choose A constant, so that again
(1.23) is valid provided D =0. Because of the way ¢ is normalized at +oo,
C =4i*. Inserting (1.25a,b) we find in addition

T =0, R(1D=8i’R(L 1), (1.26)

which means that the transmission coefficient as function of { is a constant of
the motion and the reflection coefficient R({, t) evolves by simply changing its
phase linearly with time.

It was known from the early 1950’s that the potential —q(x) of Schrédinger’s
equation can be completely recovered from a knowledge of what is called the
scattering data,

S ={(A,,, b} R(), { real}. (1.27)

From S, the transmission coefficient T({) can also be found. But if S is known
from q(x,0) at t =0, then (1.24) and (1.26) allow us to calculate S(t) in a very
simple manner. Hence q(x, t) can be constructed at any arbitrary time. The
prescription for the reconstruction involves a linear integral equation, the
Gel'fand-Levitan—-Marchenko equation. This and many other details will be
derived in Chapter 3. For now, let us just remark that the general solution of
(1.21) involves several components. The solitons, which propagate with posi-
tive velocity, are the physical manifestation of the discrete spectrum, one
soliton for each eigenvalue. In isolation (at t = +), each soliton has a height,
width and speed proportional to —A,, ¥—A,, and —A,, respectively. Its position
at any time can be calculated from b,. The continuous spectrum gives rise to a
component of the solution which, although nonlinear, bears a close re-
semblance to the solution of the linearized equation (1.32). The amplitude of
the wave group associated with wavenumber ¢ is measured by |[R(Q)], its
position by Arg R({). The region around x=0 joining these two solution
components involves among other things the self similar solution of (1.21) and
is complicated, but it basically plays the role of a nonlinear Airy function.
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(John Greene liked to attach a moral-religious categorization to the two
solution components; the solitons were the soul of the solution while the
continuous spectrum gave rise to the mortal flesh. I suppose it depends on your
point of view which component deserves to be called good.) If one thinks of the
various solution components as normal modes of the nonlinear system and this
thinking is useful, then one can single out the soliton mode as special because it
is totally new and has no linear analogue.

The essence, then, of the application of IST is as follows. The equation of
mterest

q:+6qg + G =0 (1.28)
is written as the integrability condition of two linear equations
(—L+M)d=d,+A+q(x, D=0 (1.29)
and
=(q, + C)p +4(A —q/2) ¢, (1.30b)

(where C is determined once a normalization is chosen for ¢(x, t; £)). Then
q(x, 0) is mapped into the scattering data S(0) of (1.29). The evolution of S(t)
is simple and linear. From a knowledge of S(¢), we reconstruct q(x,t).
Schematically,

direct transform

q(x, 0) > S(0)
time evolution
lof sc. data (1'31)
q (x. t) {inverse transform S( t).

The procedure is completely analogous to the way in which one would solve
the linearized version of (1.28),

qt + qxxx = 01 (1.32)

by the Fourier transform. Here the direct transform is
1 {~ .
b(k,t)=— I q(x, t)e * dx, (1.33)
27 ).

and b(k, 0) is known once q(x, 0) is given; the time evolution of b(k, 1) is
b,(k, t) = ik>b(k, 1); (1.34)

the inverse transform is
q(x, t)= I b(k, t)e™™ dk. (1.35)

Indeed, we will show that IST, in the linear limit, reduces to the Fourier
transform.
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We also know that we can interpret both equations (1.28) and (1.32) as
infinite dimensional Hamiltonian systems; we may write each formally as

o 6H
= — 1.36
%= or 5q (1.36)
where §/8q is the variational derivative of the Hamiltonian functional H[q];
1.e.,

.1 < 8H
Im(l)—(H[q+85q]—H[q])=j —3-q—<3qu-

Equation (1.36) is analogous to the expession
z'=JVH(z) (1.37)

valid for finite dimensional systems. Here z is a 2N-vector (€.g., G, - - - » Gns
P1»---,Pn), J a skew-symmetric matrix (e.g., (C;, ¢)) and V the gradient
(6/0g1, . . . , 8/3pN). In (1.36), q(x) should be considered as an infinite dimen-
sional vector, 8/dx a skew-symmetric operator instead of a matrix and 8/6g a
variational derivative replacing the gradient. The corresponding two-form
Y 8g; A 8p; which is preserved under the flow is

L [; Sq(x) A ([; 3q(y) dy) dx. (1.38a)

2
The integral §* is the inverse operation to J, where J is d/0x. The Poisson bracket

of two functions F and G is
* &8F 8 6G

F, G =I ———dx. 1.38b

{F, G} | 5qox g ( )
For (1.21), the Hamiltonian H=[*, Gq%2—q) dx; for (1.32), H={..1q2 dx.
The Fourier transform (1.33) is a canonical transformation which carries the
old coordinates (q(x), —oo<x <) to new ones A =2 |b|*/k, 6 = Arg b(k, t) in
which the two-form (1.38)

% j (6q /\.[ dy Sq) dx = I 8A (k) As6(k) dk (1.39)
—-co —-oo 0

is preserved. (The reader should prove (1.39) for himself; for those unfamiliar
with the wedge notation, 8q A 8w means 8,q 8,w — 8,q 8, w, where 8, and 8, are
independent variations.) In (1.39), since w,=gq, one should not think of
q(x) and w(x)=§*.q(y)dy as conjugate variables; rather one should read
(1.39) as the continuous limit of 3}, 8g; AY;; 8q. On the other hand, the new
coordinates A and 6 are conjugate variables. From (1.34),

A, =0, 6=k (1.40)
which are Hamilton’s equations

oH oH
A=-=", =
‘ ¢t BA°
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where
1 = 2 1 - 3442
H:-J. qxdxzhL k>A“(k) dk.
2) . 2
In an exactly analogous way, IST is a canonical transformation which carries
the old coordinates {g(x), —oo<x <) to the new ones which are the scattering
data S given by (1.27).

Gardner [13] was the first to note that the KdV equation could be written in
a Hamiltonian framework. Later, Zakharov and Faddeev [13] showed how it
could be interpreted as a completely integrable Hamiltonian system. For a
finite dimensional system of 2N dimensions, the term completely integrable
means that the system possesses N independent constants of the motion F;(p, q)
p=Py---,0n) =1, --.,07), j=1,..., N which are in involution with
respect to the Poisson bracket. From this beginning, one can define N action
variables (as functions of the F;’s) and N corresponding angle variables. For
infinite dimensional systems, things are more formal. In this context, we will
use the term completely integrable to mean that an infinite number of new
coordinates can be found analogous to action-angle variables such that the
former are constants of the motion and the latter vary linearly with time. As
the reader may have already guessed, the action coordinates are functions of
the infinite set of conserved densities.

Let me make a further remark on the time dependence of the transformed
variables and point out the sense in which the infinite line problem for (1.28)
(q(x, )— 0, x —> +oo, all t) is simpler than the periodic problem (g(x,t)=
q(x+P, 1) all x and 1). In the former, we know g at two points of the interval,
namely x = =+co, for all time. Indeed, the scattering data are a measure of how
the asymptotic solutions of (1.29) (exp (+ivA x) change as x traverses the
potential between —co and +oo. From (1.30), one can see that at +o, the time
dependence of ¢(ox, t; {) is independent of q as q and its derivatives are zero
there. In the latter problem, the periodic problem, q is not known for all time
at any point on the interval [0, P]. Consequently, the time dependence of the
scattering data is much more complicated.

Both these cases contrast with the way in which Burgers’ equation u, =
u,, +2uu, is linearized. There the equation can be written as the integrability
condition of ¢, = u¢ and ¢, = (u*+ u, ). Whereas it seems that the evolution of
é(x, t) depends on a knowledge of u(x,t), this is not really the case as
(u?+u, )¢ = ¢,,. Therefore, under the transformation ¢, = udp, ¢ satisfies the
linear heat equation. In the case of KdV on the infinite line, the equation for
&(x, t; A) does not linearize; instead there is a free parameter A and (1.28) is
the integrability condition for (1.29) and (1.30) for all A. So instead of knowing
&(x, t; A) for all x and 1, we know it for all t and A at x = +oo.

1f. The Lax equation [14]. Despite the fact that the time dependence of
the angle variable is more complicated, both the infinite line and periodic
problems show the key property that as g(x, t) evolves according to (1.28), the
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spectrum of L of (1.29) considered as an operator on L% R) (R =(—<x, ) or
(0, P)), does not change. This property was expressed in an elegant manner by
Lax (1968) in the same paper [14] in which he examined the two-soliton
interaction. He noted that if L(f) (here self-adjoint) and L(0) share the same
spectrum, they are unitarily equivalent; that is, there exists a unitary operator
U (UU*= U*U =1, the identity) such that

L()U(t)= U(t)L(0). (1.41)

Thus if ¢(x,0;A) is an eigenfunction of L =—(d*/dx?)—q(x) at t=0 with
eigenvalue A, then ¢(x, t; A)= U(t)d(x, 0; A) is the eigenfunction of L(t) with
the same ecigenvalue. We see this directly from (1.41) since
LUt d(x, 0; A) = AU(t)d(x, 0; A). Differentiating (1.41) with respect to time
gives vs that

L,=BL-LB=[B,L] (1.42)

where B = U, U* is skew adjoint. Equation (1.42) is called Lax’s equation and
L and B are called a Lax pair Note that B can be obtained by recognizing that
& (x, t; My = Up(x, 0; )= UU*P(x, t; A) so in the case of KAV, from (1.30)
we read off B as (recall A, = — ... —(qd),)
3

B- —4%3—3(%3;5"’; q)+C. (1.43)
It turns out that all the solvable equations like KdV can be expressed in Lax
form. Indeed Lax showed that there was an infinite sequence of B’s, one
connected with each odd order of d/8x, and therefore an infinite family of flows
q, wnder which the spectrum of L is preserved. We will find formulae for these
in Chapter 3. The reader might verify directly that (1.42) is indeed (1.21).

1g. Simultaneous developments in nonlinear optics and Backlund
transformations. At approximately the same time as these advances were
being made, the soliton made its appearance in a totally new context, the
propagation of ultra-short (10 '?sec) optical pulses in resonant media. In
1967, McCall and Hahn [15] discovered the phenomenon of self-induced
transparency, an effect whereby the leading edge of a pulse is used to invert an
atomic population while the trailing edge returns the population to its initial
state by stimulated emission. This process is realizable if it takes place in a time
short compared to the phase memory time of the medium and also if the pulse
has sufficient intensity to cause the population inversion. If we assume a
medium of nondegenerate two-level atoms and neglect the effects of in-
homogeneous broadening (the mismatch, due to Doppler shifting, between the
carrier frequency of the incoming pulse and the energy difference of the two
levels), then the process can be described in terms of a single field equation, the
sine-Gordon equation

u,, =sin u, (1.44)
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where x measures distance from the beginning of the medium, t is the
(retarded) time and the electric field envelope E(x, t) is proportional to du/ox.
This equation had been known for a long time. It had been studied long ago
in connection with the theory of surfaces of constant negative curvature. In
particular, A. V. Backlund (see [16]) had discovered that a new solution (or
surface) u,(x, t) could be found of an old one uy(x, t) by the transformation

U+ g
2 2

Uy — Ugy = 4i£ sin (1.453)

(1.45b)

Such transformations are known as Backlund transformations (we will give a
definition later in Chapter 4) and allow multisoliton solutions to be constructed
in a fairly simple manner. For example, take u,= (; then integrating (1.45), we
find

u, ==+4tan" ' exp (—an ——t—) . (1.46)
27

which describes a pulse u for which the corresponding electric field envelope E
is equal to 4m sech 2nx+1t/2m) and the area |, E dx = u(c) — u(—) is equal
to 27. These pulses are known as 2 pulses, and are called kinks (antikinks) if
u increases (decreases) by 27 as x goes from —co to +c0. More complicated
solutions can also be found by a ladder process, a theorem of permutability
attributed to Bianchi, which may be written

Uz~ Uo _ €1+§2tan Uy — Uy
4 €1_§2 4

(I will leave the derivations of this as an exercise to the reader.) The more
complicated solutions are known as Oz (u goes from 0 at —o, to 27+ and back
to 0 at +oo; this pulse is effectively a superposition of a kink and antikink) and
41 (superposition of two kinks) pulses.

Just as in the case of the Korteweg-deVries equation, the sine-Gordon
equation arises in a variety of contexts:

tan (1.47)

(1) as a model for dislocation in crystals (in which context Seeger, Donth
and Kochendorfer [17] used the Béacklund transformation to obtain the
27 pulse as early as 1953);

(2) as a model field theory (we have already referred to the work of Perring
and Skyrme [18]);

(3) and in superconductivity where u describes the difference in the phases
of the wave functions across a Josephson junction (see [19]).

It also describes a readily visualized mechanical model proposed by Scott which
consists of a string of pendula suspended from and free to turn about a
horizontal torsion wire. In this context u(X, T) is the angle of twist measured
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from the vertical, and with x = (X + T)/2, t = (X — T)/2, (1.44) takes the form
Uprr — Uxx Tsin u=0. (1.48)

A kink is a counterclockwise twist of angle 2+r; an antikink has the opposite
orientation.

I do not want to leave the topic of the sine-Gordon equation without noting
the important contributions that George Lamb has made to the subject. In a
sequence of several papers, culminating with his 1971 article [20] in Reviews of
Modern Physics, he claborated on and discussed the physical relevance of the
multisoliton and self-similar solutions of the sine-Gordon equation. He foresaw
that the sine-Gordon equation is a sister under the skin to the Korteweg-
deVries equation. Indeed, he independently discovered the inverse method for
its solution. It is fitting, I think, to pay tribute to a modest man, a rare breed, a
man who even resisted the urge to recount his accomplishments in his own
book. He only lists one of his own references.

1h. Soliton factories and later developments of the 1970’s. With all the
ingredients out on the table as early as 1967, it is somewhat surprising that it
took five years to take the KdV equation out of its integrable isolation. Some
felt that it was a fluke, a clever transformation somewhat akin to the Hopf-
Cole transformation (see also Forsythe, Vol. 6, p. 100 where the linearization
of Burgers’ equation is given as an exercise). Then in 1972 (published in 1971 in
the Soviet Union), Zakharov and Shabat [21] found the Lax pair for the
nonlinear Schrodinger equation, another universal equation about which a lot
more will be said in Chapter 2. The Zakharov—Shabat result, the Potsdam
conference of 1972, and the lectures of Kruskal on the sine-Gordon equation
unleashed a great tide of energy on these problems. Wadati [22] discovered the
setting in which to solve the modified Korteweg—de Vries (MKdV) equation.
Ablowitz, Kaup, Newell and Segur (AKNS) [23], motivated by several key
observations by Kruskal, solved the sine-Gordon equation (independently
solved by Lamb and, a little later, by Faddeev and Takhtadzhyan) and, soon
thereafter, showed how to write down the full set of equations (the AKNS
hierarchy) solvable through the use of the Zakharov—-Shabat eigenvalue
problem

vy +ilv, = q(x, v,

(1.49)
Vg, — iU = r(x, )v,.
By this time, it had become clear how to begin with any eigenvalue problem
and write down the evolution equations which kept its spectrum invariant.
Soliton factories sprang up all over the world.
Tougher problems were handled. The Toda lattice (see [24]),

w U —u__

un,. = g1 — o' 1, (1-50)
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was shown to be an integrable model (Flaschka, Henon). It played the same
seminal role for other classes of nonlinear partial difference equations that
KdV did for partial differential equations.

The perniodic problem for KdV was solved in several stages by several
authors about and after 1976. The first discovery was the so-called finite gap
solution in which the periodic and antiperiodic spectrum of (1.29) with periodic
potential g(x) (Hill’s equation) consists of (2n+1) simple eigenvalues A,
Ay, - .., Ay, with remaining ones all double (McKean and van Moerbeke [25],
Novikov {26], Its and Matveev [27], Krichever {28]). The infinite gap limit was
treated by McKean and Trubowitz [29]. Many of the discoveries turned out to
be rediscoveries of earlier work of Baker, Drach, Burchnall and Chaundy [30].

Lax pairs were also found for problems with spatial dimension more than
one. In particular we shall discuss some results concerning the Kadomtsev—
Petviashvili (KP) equation

£qy, +(q, +64G; + i) =0 (1.51)

(a weakly two-dimensional Korteweg-deVries equation). The initial value
problem for this equation is very complicated and has only recently been
solved (Manakov [31], Ablowitz, Fokas and Segur [32]). The instanton, the
soliton of the self-dual Yang—Mills equations, has also been found, and a
construction of a k-parameter instanton solution has been given by Atiyah,
Hitchin, Drinfeld and Manin [33]. Several other field equations, important in
nonlinear physics have been found to be integrable.

Before I leave this section, I want to tell you a bit about a giant in the field,
V. E. Zakharov. He has contributed in so many areas: the Zakharov equations
of plasma physics, his papers with Shabat outlining for the first time a general
prescription for handling Lax pairs for equations with more than one spatial
dimension, his work on the self-focusing singularity, and his paper in the
Bullough—Caudrey volume [113] (see references on the method of “‘dressing”
(building hierarchies of solutions)). He seems to have the knack of getting to all
of the good problems first. He is a genius, brilliant and intuitive. A wild bull of a
man of great good humor and appetites, he has a deep and abiding love and
need for poetry and literature as well as physics. On one of our few meetings,
he recited and acted out with great relish the opening scene from Macbeth.
You will often come across his name.

li. Soliton miracles and the need for a unifying point of view. A whole
new world of integrable systems had been discovered together with construc-
tive methods (IST, Backlund transformations, Hirota’s method) for obtaining
solutions. Hirota’s method [34], which I have mentioned in the introduction, is
quite ingenious. For the KdV equation, one sets

2

qlx, t)=2 % In 7(x, t) (1.52)
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and obtains a quadratic equation for 7(x, t)

Tl — T + Toxex — Ty + 372, =0 (1.53)
which Hirota rewrote in terms of a new differential operator which he intro-
duced as (DD, + D% - 7 =0. (1.54)

I will explain the notation in Chapter 4. From (1.53), (1.54) N-soliton (and
rational) solutions could be found simply by letting 7(x,t) be the sum of
exponentials with phases linear in x and ¢t and depending on arbitrary constants
(which turn out to be the phase-shifts mentioned previously). For N>2, the
equations for the constants are overdetermined but consistent. What is it that
brings about this consistency? The equation (D.D,+D%7 - 7=0 has similar
properties. But (D, D, + D%+ - r=0 has only 2-soliton solutions.

The Hirota method was once thought to be merely an ingenious device for
finding solutions to soliton equations. In fact, the working definition of a
system’s integrability was taken to be: send your equation to Hirota; if you get
it back solved within three weeks, then it’s integrable! However, recent
connections with quantum field theory and statistical mechanics indicate that
Hirota’s method plays a much more central role in the theory than heretofore
believed. I hope in these lectures to show you one way in which it ties in very
naturally with the general theory. I believe it also clearly relates to the Painlevé
property [35] enjoyed by integrable systems. This property, which I will discuss
in Chapter 4, says that the only singularities of integrable systems which are not
fixed but depend on initial data are poles. This is almost equivalent (not quite,
since there are fixed singularities with ugly natures) to saying that the Hirota
7(x, t) function is analytic in each of its variables. Certainly, as we will show,
for certain solution classes, it will be.

What, then, is the general theory? What is the unifying structure which ties
all of the miracles that happen in soliton mathematics together? The miracles
include: an infinite number of conservation laws, membership in an infinite
family of commuting flows (I will explain this term in Chapter 3), a Hamilto-
nian structure, the Hirota formulation and the r-function, the Painlevé prop-
erty, the association with a linear eigenvalue problem, inverse scattering,
isospectral, iso-Riemann surface, isomonodromic (ithe last two yet to be ex-
plained) deformations [36], Biacklund transformations.

The connecting link, I believe, comes from asking the question: given an
evolution equation, how does one determine whether it is integrable and
possesses all these remarkable properties? The first investigators to give a
(reasonably) rational way of answering this question were Wahlquist and
Estabrook [37] and I will describe my version of what they did in Chapter 5. In
essence, they try to force the nonlinear equation of interest to be an
integrability condition of two linear equations containing the unknown variable
and its x derivatives as coefficients. In doing so, they obtain an infinite
dimensional algebra or, to put it another way, a set of commutation relations
that are not closed.
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It is our contention (and my colleagues in these endeavors are Hermann
Flaschka and Tudor Ratiu) that the Wahlquist-Estabrook method is trying to
tell us that the appropriate phase space on which all the flows live is an infinite
dimensional Lie algebra, which for problems in one spatial dimension is
isomorphic t0 a Kac-Moody algebra. This algebra can be written as a direct
sum of two subalgebras; the orthogonal complement of one is the dual of the
other. On this dual, there are natural dynamical structures, a Poisson bracket
and a Hamiltonian vector field. A special class of Hamiltonians gives rise to a
set of commuting flows and each flow is then an exactly integrable equation. It
is important to stress that integrable evolution equations always arise as
members of an infinite family. From this starting point, many of the features on
the list of miracles fall out as natural consequences [38] and we answer from
two points of view the question

“What does the Lie algebra sl(2) have to do with KdV?”

All this material will be discussed in depth in Chapter 5. Our work is
complementary to recent work by groups in Kyoto [39] (M. and Y. Sato, T.
Miwa, M. Jimbo, M. Kashiwara, E. Date) and Oxford [40] (G. Wilson, G.
Segal).






CHAPTER 2

Derivation of the Korteweg—deVries,
Nonlinear Schrddinger and Other Important
and Canonical Equations of Mathematical
Physics

2a. An outline of what we are going to do. In this chapter, the goal is to
convince you of the reasons for the ubiquity and therefore the importance of
the Korteweg—deVries (KdV) and nonlinear Schrédinger (NLS) equations.
Whereas discussion of these equations will occupy most of the chapter, in the
last section I will mention briefly other canonical systems.

The KdV equation will arise in all situations which can, at leading order, be
approximated by a first order linear hyperbolic system but which also contain
weakly nonlinear and weakly dispersive terms. The equation describes how
each of the Riemann invariants, which travel unchanged along corresponding
characteristic directions if nonlinear and dispersive effects are absent, slowly
and independently evolve due to these influences. We saw an example of this in
our opening chapter. There, the mechanical system was described to first order
by the linear wave equation and the weak nonlinearity and dispersion was due
to the nonlinear spring potential and the discreteness of the lattice respectively.
A disturbance, initially confined in an order one interval, will evolve on an
order one time scale into left and right going components according to the
prescription of the linear wave equation. However, over long times and
distances inversely proportional to the strength of the nonlinearity and disper-
sion, the subsequent evolution of each component will be described by two
separate KdV equations. In the following section, we will show how the KdV
equation obtains in the context of low amplitude long water waves on narrow
and shallow channels. I chose this example for two reasons. The first is
historical, and the second is that it provides an intuitive and readily visualized
context in which to examine the effects of other influences which spoil the exact
integrability of the KdV equation. In particular, we shall examine what
happens to long waves as the channel depth decreases or increases slowly. The
response of the wave is not purely adiabatic. We will also derive an equation
(or I will ask you to derive it in the exercises) which can model situations in
which all the waves crests are not exactly parallel to the shore line or each
other. This equation is called the Kadomtsev—Petviashvili (KP) equation, or
sometimes the two-dimensional KdV equation. It, too, has miraculous proper-
ties. In the exercises, I will also ask you to derive the equations for the Toda
Iattice and to discuss in what limits the waves in this lattice can be described by
the KdV equation. We will also meet the Boussinesq equation which. like the
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KdV and KP equations, enjoys the property that it is exactly integrable and we
will discuss the situations in which it obtains.

If you were impressed by all the places in which either the KdV or one of its
close companion equations arise, you will be truly amazed at the ubiquity of
the nonlinear Schrodinger equation (NLS) and its close relations. It is an
equation for a complex scalar field q(x, 1),

a = iq., +2ig*q* (* is complex conjugate). (2.1)

It describes the evolution of the envelope of a wave train and, unlike its linear
counterpart, contains within it the soliton solution embodying the concept of a
wave packet. The circumstances necessary for its occurrence are that the
underlying wave packet is strongly dispersive, almost monochromatic and
weakly nonlinear, The x in (2.1) is position measured with respect to a frame
of reference moving with the (linear) group velocity corresponding to the wave
number of the carrier wave, and the equation itself represents a balance
between linear dispersion which has a tendency to break wave packets up and
the focusing effect of the cubic nonlinearity produced by the self interaction of
the wave with itself. We shall also meet variants of this equation. The
nonlinearity is not always as simple as q°q*, arising from a gZe?®xq*e ™
(@ = kx — wt) interaction, but may also involve a mean (nonoscillatory) compo-
nent p(x, t) in the form pq. In some instances, the mean field p is algebraically
proportional to gq®*, in which case (2.1) obtains. In other cases, (2.1) is
augmented by another equation relating the evolution of the mean field p to
spatial derivatives of gqq*. Rather than drown the reader in the extensive
calculations which arise in many of the physical applications, I will examine
each of the occurrences in their simplest nontrivial contexts, emphasizing the
ingredients which lead to the different cases and then point the reader to the
relevant papers in the literature.

I also want to introduce some related ideas and show their connection with
NLS. In particular, we will examine how to find the nonlinear Schrodinger limit
of Whitham’s theory, which is a prescription for following the evolution of fully
nonlinear wave trains in a slowly varying environment. This limit is subtle and
the point is not often addressed in the literature. We shall also look
at the effects of more dimensions. Somewhat counter to one’s intuition, the
replacement of ¢°/éx* with V* in (2.1), with the plus sign on the nonlinearity,
leads to the effective strengthening of the nonlinear focusing property of the
equation to the extent that the solution becomes locally unbounded in finite
time. This focusing phenomenon is widespread in physics and is seen in
plasmas in the form of Langmuir wave collapse and in optics as filamentation.
Of course, as the amplitude and the inverse of the envelope pulse width
become very large, the premises under which the equation is derived are no
longer valid and a new description has to be found. Nevertheless, the equation
does describe the beginning of the process by which waves focus locally.
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2b. Small amplitude, long waves in a channel of slowly changing depth.
Equations of the KdV type [41], [42], [43]. In this section, we return to the
model which started the whole business. The plan is to give a careful derivation
of the KdV equation for the case of water waves. Following Johnson’s paper
[44], we will also include the effects of a slowly varying depth and comment on
how to attack the resulting perturbed KdV equation. Several remarks on the
Boussinesq (bidirectional) and Kadomtsev-Petviashvili (weakly two-
dimensional KdV) equations will close out the section.

Consider the following situation shown in Fig. 2. (The amplitude and
horizontal length scales of the disturbance are greatly amplified and diminished
respectively so that everything will fit in the picture.) Assume a two-
dimensional, vorticity free fluid with velocity field w(x, y, t) in a simply con-
nected domain bounded by a time independent lower boundary y = —H(x) and
a free surface y = hy+ N(x, t). The conditions at the ends x = —o, +cc will be
left unspecified for the moment but we will imagine that at these points the
bottom boundary levels out to a constant depth. We introduce a velocity
potential ¢(x, y, t) given by u=Vd.

We also assume that the disturbance in which we are interested has the
following features. Its horizontal length [ is large when compared to the
average depth hg; in fact hi/l*= e« 1. Its amplitude a is small compared with
the average depth h, i.e., a/h,= u « 1. The phenomena of interest to us occur
when these two scales balance. The distance over which the bottom boundary
changes significantly (by order one) is greater than I. With these rules in mind
we scale the independent and dependent variables as follows:

x — Ix, y — hgy, t—>—1t,
gho 2.2)
Hohh N=an, &= Wgheo.
0

,To —  uinyt)
I

L.,

F1G. 2. Solitary wave propagating in a channel of changing depth.
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Here g is gravity and, consistent with the last sentence, we assume h, = ehy,
X =¢gx and hy is at most order one. With these scalings, the equations of
continuity, the boundary condition on the normal velocity at y=—h, the
continuity of normal stress (pressure) at the free surface (use Bernoulli’s
equation), and the free surface condition that equates the normal velocity of a
particle at the surface with the normal velocity of the surface are (subscripts
denote partial derivatives)

b,y + b, =0, (2.3)
b, = —&2hy b, y =—h, (2.4)
1 1
Gotn+spdi+-2=0,  y=1+um, (2.5)
2 2¢
1
e+ ““bxnx = ; ¢y’ y= 1+ B (2-6)

The equations are solved by recognizing that (2.3) admits power series solu-
tions in y (actually y+h is more convenient) and we find, after using (2.4),

~ _£ 2, 2( L a_
8 3, 0= Fx, 0 F b+ (35 Fo(y + B — by 4 1)) -

2.7

Let us first derive the shallow water equations which are found by letting
€ — 0, p finite. From (2.7)

1
_(by =—Fxx(1+“‘n+h)_Fxhx,
£

where we have written h, for eh,,.
Now we can take the limit as £ — 0 and setting ¢, = u, we have for (2.5) and
(2.6)

u, + puu, +n, =0,

.+ ({(1+h+pn)u), =0, (2.8)

the shallow water equations. (In the lattice model, this limit corresponds to
taking the distance between the masses to be zero.) It is well known that, for
most initial conditions, shockline structures, where 7, and u, become infinite in
finite time, are encountered.

However, the limit of interest to us is when nonlinearity measured by g and
dispersion measured by £ are both small and balance. Setting =¢ and
expanding (2.5), (2.6) about y =1, we find

b +n+3ed;=0, y=1, (2.9

1
nte@ms=—¢, =1, (2.10)
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where now 1 .
— ¢, =—F.(1+h) +€ F...(1+h)*—eF.hy.
€

The fundamental difference between the two limits is that dispersion in the
form of higher order derivatives on F has been introduced at a level which can
balance the tendency of the wave to break. Writing u=F, (u is only
the horizontal component of velocity to leading order since ¢, =F,
—(e/2(y + h)*F, + O(e?), we find, after taking the x derivative of (2.9) and
neglecting terms of order €7,

ut + N = 8(%D2uxxt - uu'x); (2.11)
n+ (Du), = eGD e — (um),), (2.12)

where D=1+h. (Remember ¢, (y=1)=u—e(h?/2u,, + O(e?).) While these

equations are the starting point for analyzing flows which have both left and

right going components, one can obtain the simpler KdV limit by seeking

solutions of (2.11) which are unidirectional waves, either right going or left

going. It is vital that we use the correct characteristics which are

1 (* dX .

®:t::Ft+;.[ —Dﬁ, (2.13)

where X = ex. We can make a single equation for F out of (2.11) and (2.12) by
integrating (2.11) or solving (2.9),

n=—d¢, “%Sd)i-
Substituting (2.7) into (2.12), we obtain

3

F,—(DF,), = —2¢F.,F,,—eFF, +¢ % Fo... (2.14)
It is now straightforward to derive the equation which describes the long
distance behavior of F. As a first try, let us take D= 1. Then solve (2.14)
iteratively in a manner akin to that used in Section 1c. Let F=f+eF;+-- -
where f=f(0, = —t+x, X = ex). Then (2.14) is satisfied to leading order and at
O(e) we obtain an equation for F, (let ®, =0)

&°F,

Fiy~Fp =4
1t 1xx a@_a@)

= 2fex +3fefoe +3fveoe-

where ®_ =t + x. The term 2fgx comes from F,, and takes account of the slow
dependence of f on X. Since the RHS of this equation is independent of ©_, F;
will grow linearly with ®_ unless

2fox +3fefoe+3fecee =0. (2.15)

Now if D is not constant but depends on X = £x, we proceed exactly as before
except that it is crucial to use the correct characteristic coordinates ®, and ©_
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as given by (2.13). I will leave it as an exercise to the reader to show that in

order to suppress secular growth in F,;, where F= (0., X)+¢F,+ - - - , we must
choose
oD
+6qge+ =—=—2gq, 2.16

where we have written ®, as @,

f@ = %qu, (2-17)
and 7 is a rescaled distance coordinate
1 x

T=6.[ D2 dx (2.18)

We call (2.16) the perturbed KdV equation or PKdV.

Several remarks are in order. First, notice how we choose to write the
equation as an evolution in x rather than t for a profile q(7, ®) which depends
on the (negative) retarded time

1% dx

®=—t +'g J '-D'-iﬁ .

If D were constant, it would have been equally convenient to use either t (as
we did in Section 1c.) or x in this role. Here, because the medium itself
depends on x, it is necessary to use the latter. The particular problem we are
going to analyze in some detail later is posed as follows: given q at x=0 as
function of t for all time and that g — 0 as t — +, find q(x, t) for all x=0.

Second, we point out that in order to treat the term on the right-hand side of
(2.16) as a perturbation, we must take D,/D to be of order o0« 1. But,
recalling that we have already omitted terms of order £? from the equations
(2.11), (2.12), we insist that

EX o<, (2.19)

Third, let us look at the mass flux through a given station x for all time.
From the equations themselves we know

a 1+en
ox J_,

where i = ¢, is the true horizontal velocity. Thus if no net mass is added
between t =—o and +o, we have that

a o0 1+em

— j dt(J i dy) =0 (2.21)
0x J_o —h

and, to leading order, this means that

a oo
— J Dudt=0, (2.22)
ox J_.
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with u = F,. Now note from (2.16) that

a ==
Py j D*qde=0 (2.23)

or converting to x, t coordinates,

A7 ey, g

™ J.“m D*udt=0. (2.24)
This means that PKdV does not conserve the total mass flux through a given
station. What happens is that some water is reflected and so in order to analyze
correctly the influence of a change in depth, one must also look at the left
going flow. This we will do when we investigate the propagation of a solitary
wave towards a shore.

Fourth, let us derive a law that has been around for 150 years, Green’s law.
Suppose we were just considering a linear wave propagating in a region of slow
depth change. Then the equation describing the evolution of the amplitude g
would be given by (2.16) without the two last terms on the left-hand side. The
result is that D%*q or D**u or D**q (recall n~—¢,~ D "*¢,) is a function
only of ® and is therefore constant along right going characteristics.

We are now in a position to describe how to handle both (2.16) and the full
bidirectional problem (2.11), (2.12). Imagine the following situation. A solitary
wave ¢, with amplitude 7, arrives at x =0 at time t=0 at which point the
unperturbed depth begins to change. The solitary wave will undergo an
adiabatic change (its amplitude parameter will change slowly) to satisfy the
conservation of energy law

9 [ , ,,__?_1_)312
ansd@— > p )% 4@

However with q = q,, the mass flux law

2 jqd®= —ggjqd@)

o7 4 D

then fails to be satisfied. We therefore must add to the right going flow a shelf
of amplitude of order o (relative to the solitary wave amplitude) which
stretches between the point to which infinitesimal disturbances would have
travelled @, =0, and the solitary wave, a distance of order ¢ ' as measured in
the units of the solitary wave width. Therefore it carries a mass flux of the same
order as the solitary wave. Its amplitude in the immediate rear of the solitary
wave is determined by the amount by which the local mass flux law fails to be
satisfied. Its future evolution from that point is given by Green’s law.

However, this is not enough because, as we have already noted, the mass flux
law for the full bidirectional equation is still unsatisfied. Therefore, we must
add another component, a wave of reflection. This has an amplitude (relative to
the solitary wave) of order oe and stretches over a distance (o€)™' times the
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width of the solitary wave so that it, too, carries a mass flux of equal order to
each of the right going components. The velocity field of this reflected
component is determined on the right going characteristic at @, =0 by the
amount by which the mass flux law of the PKdV equation fails to satisfy the
exact mass flux law of the full bidirectional equation. Its behavior elsewhere is
determined by solving the Goursat problem: given u on O, =0 and n=u=0
on ®_=0, find u, n which satisfies the linearized version of the equations
(2.11), (2.12) in the quadrant ©, <0, ®_>0. It turns out that Du and 7 are
constant to within O(eo’)? along the negative characteristics ©_. Green’s law
does not apply because the gradient of the field variables u and 7 is of the
same order as the gradient in the undisturbed depth.

Using these ideas (which can probably be best characterized by the phrase
“the judicious use of the conservation laws”) we can find a completely
consistent solution to the original problem. It is of interest to list the mass flux
M (normalized by the factor 5m,pe?*h2) associated with the three solution
components. (3n2eh, is the amplitude of the incoming solitary wave, p is
density, and h,, h(x) and h; are the initial, local and final undisturbed depths
respectively.)

solitary wave: —

hy’
" (h
right going shelf: (—) - (71—), (2.25)
0 0
1/4 1/4
reflected wave: (hﬁ) —(h) .
0 ho

The sum of these three components is (hy/hg)''?, which is constant and equal to
the right going mass flux after the pulse has reached the new constant
undisturbed depth and no further reflection need be accounted for. Note in
particular, the interesting result that if h; < h,, most of the water is reflected.
We carry out some of the calculations in Chapter 3. Other details on these
calculations and related results can be found in references {43], [45], [46].
Among some circles, the need for a reflected wave is still a point of con-
troversy. The feeling is that a slowly changing slope should at best induce an
adiabatic right going response and the wave of reflection should be exponen-
tially small. However, the existence of a starting point at which the depth
begins to change means that the response is not adiabatic. The solitary wave
and the amplitude of the right going shelf are slowly varying but the range of
the latter is not. It extends from the rear of the solitary wave to the point to
which the longest linear wave would have travelled from the starting point.
This means that the right going shelf is not infinite in length and therefore is
not able to account for all the mass flux.

We close out this section with some comments on the roles of the exactly
solvable “Boussinesq™ [47] and Kadomtsev-Petviashvili [48] equations. The
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former is
U~ Uxx = UxUxx + Uexxxc + (2-26)

We observe that the lattice equation (1.3) is exactly the same and, if we
allow ourselves a little latitude (namely replace F, by —F, in the nonlinear
terms) (2.14) is too.? But in what sense is (2.26) a more accurate description of
events than two uncoupled KdV equations? The answer is that it is no more
accurate for, if the right-hand side in (1.3), the nonlinear and dispersion terms,
is to be of equal magnitude with the left-hand side, then the terms we have
ignored (€%y,,.... and nonlinear terms such as €2y, Y,..) are equally impor-
tant. We may therefore ask: are there any circumstances in which (2.26) is the
relevant canonical equation? The answer is yes. Recall that I pointed out that if
in the first approximation the underlying system is hyperbolic with distinct
characteristic velocities, then the slow distortion of the corresponding Riemann
invariant about each characteristic direction is described by the Korteweg-—
deVries equation. However, if two of these characteristic velocities are close,
then one cannot separate out the evolution along these two neighbors. It is a
fairly simple exercise to show that the canonical equation describing the long
time behavior of solutions to

2
eV D) Ererva L u=eve 2z, e I
ot ax ./ \ot d ax 9x? ax

is indeed the Boussinesq equation. In the frame of reference travelling with the
average velocity ¢, the slow evolution of the field u as function of X =x—ct
and T=+et is given by (2.26). The reason that the nonlinear term must be
taken smaller than the dispersion term is that the initial resonance (the leading
order approximation is (9/at+ c 8/ax)*u=0) causes the initial amplitude to
grow by a factor of 1/Ve before nonlinearity and dispersion come into play.

As a final remark to this section, consider what happens if a weak depen-
dence on the other horizontal coordinate, which we will call z, is included in
the model for either water or lattice waves. This gives rise to another term on
the left-hand sides in (2.14) and (1.3) proportional to —¢F,, or —ec’y,,. It is a

trivial matter to show that the canonical long time equation corresponding to
(1.6) will now be

2
| +z fer+ fefee +8°feeee =0,
which can also be written as (set f; = 6u, 7= ¢T/2 and take §>= 1)

u,, + §(u L+ 6u + g, ) =0. (2.27)

2 Notice that (2.14), with D =1, becomes (2.26) if we only ask for its unidirectional solutions
F(-t+x) by setting F,~—F,, F,=~F, . Indeed it is this version of the equation which is
associated with Boussinesq.
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Equation (2.27) is known as the Kadomtsev—Petviashvili equation and it too,
has many remarkable properties.

Exercises 2b.

1. Derive the equation for long lattice waves if the spring force is F=
k(A+aA®). You will find that the relevant equation is the modified Korteweg—
deVries (MKdV) equation. Investigate its travelling wave solutions. Do they
exist for both the soft (o <0) and hard (a>0) spring cases?

2. It turns out that a complexified version of the MKdV equation is also
universal in the sense that it obtains as the asymptotic description in a variety
of contexts. One particular application is to the lower hybrid waves in a
plasma. The reader is directed to the references in [118] and in particular the
article by G. J. Morales and Y. C. Lee; Soliton-like structures in plasmas,
Rocky Mountain J. Math.. 8. 1, 2, Winter, Spring, 1978.

3. Show that the long time-distance behavior of the field u(x —ct, Vet or
Vex) described by the equation

(E+(c—\/;) 52—5)(3%4_(‘: +\/;:)§)u =g 8929—234- Ju

£
at ax ax% ax*

is given by the Boussinesq equation. Can you find any concrete examples
where this equation might be relevant®?. Find also the travelling waves of
(2.26). In what respect do they differ from those of KdV?

4. Suppose the spring force in the lattice is F=exp (V,.+1— V,). Write down
the equation of motion and then go to the reference [50], in which the Toda
lattice is discussed. In what limit are these waves adequately described by the
KdV equation?

5. Start with a two-dimensional lattice model in which each mass is con-
nected to two sets of two neighbors, east and west, and north and south. If the
spring constant k, in the north-south springs is much weaker than the spring
constant k in the east-west springs and of the same order of magnitude as the
quadratic nonlinearity « in the latter, then, if k, ~a~h? where h is the
spacing of the lattice masses, show that the long time behavior of the slightly
oblique right (or left) going waves in this lattice is described by the Kadomtsev—
Petviashvili equation. Be accurate. Recall that the spring law is given in terms
of the displacement in its length not just its horizontal or vertical component.
Find the travelling wave solution for this model. How is it related to that of
Kdv?

2¢. The nonlinear Schrodinger and other envelope equations. It is best to
start with a simple example. Let us consider the Scott model described in
Chapter 1 consisting of a line of pendula very close together hanging vertically
under gravity from a horizontal torsion wire about which each can twist. If the
twist angle of the pendulum at x is u(x, t), then its motion is given by the

3 After 1 posed this question at the CBMS lectures, an example was found by C. H. Su {49].
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sine-Gordon equation
Uy — U H 02 sinu =0, (2.28)

where the ﬂwﬁ sin u force is due to gravity and the c’u,, force models the
effect of the twist. Now imagine that we wiggle one end of the pendulum chain
with a very small amplitude motion of frequency w. It is not unreasonable to
expect that in order to follow this motion we can approximate sin u by its
Taylor series about u =0. Keeping the first two terms, we obtain

2
Uy — C Uy + 03U =%£ ur+-- -, (2.29)

—iwt+ikx

The linearized equation admits sinusoidal solutions u=-e where k is real

and given by the dispersion relation
w’= w§+czk2 (2.30)

as long as @ > w,,. For v <w,, k is pure imaginary and the initial wiggle dies out
exponentially in x. Let us suppose that w > w, so that real waves propagate
down the string. Now it is also to be expected that eventually the nonlinear
terms will cause some modulation of this motion as we well know that the
period of a nonlinear spring (or indeed a single pendulum) depends on
amplitude. To find this modulation, let us seek solutions to (2.29) in the form

u=¢e(ug+eu, +euy+- ), (2.31)
where
Uy = ae T4 gF gt (2.32)
and where we will allow a to be a slowly varying function of time
a, = eA(a, a¥)+e?A(a. a®)+- - -. (2.33)

The coefficients A,(a, a*) in (2.33) are chosen in order to suppress secular®
behavior in w4, u,, . . .. In the vernacular of multiple time scales we would write
A, as 0a/dT,, T,=¢t and A, as 8a/d8T,. T,=¢e’t, and so on. Solving (2.29)
iteratively leads to u, =0,

3

A=0, ==l e (),
- 2
A,=+ L%% a’a*,
4 w
whence
(02
Uy = Qg EXP (ikx - it((o -—Z(—j ezaoa’(’,‘)) +(*) (2.39)

4 Secular behavior refers 10 a situation in which the iterates uy, U,, . . . grow algebraically in the
fast time or space variables. If this were allowed to happen, the asymptotic series (2.31) would not
be uniformly valid over long times and distances.
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and the period of the motion increases. In the context of water waves, the
solution computed in this way is known as the Stokes wave. The reader might
wish to compute the period of a pendulum of maximum amplitude 2¢ |ay)
exactly in terms of an elliptic integral and then take its low amplitude
expansion in order to check (2.34) (see Exercise 2¢(1)). Note that in all this
calculation the spatial structure e** plays a passive role. Once w is fixed, then
so is k from (2.30). But no one is able to wiggle a chain at a perfectly tuned
frequency and so one might expect a small but finite band width p of frequen-
ctes and wavenumbers to be excited. How can we incorporate these into the
description? One way is to look for solutions ug which are a finite sum of waves

U= Y a0+, ef=wj+cik], (2.35)
ki=k-+pK;

but this approach is clumsy and leads to a set of coupled nonlinear cquations
for the amplitudes a; which are not terribly enlightening. Another way, which
is suggested by (2.35), is to look for solutions of a form in which the amplitude
a is a slowly varying function of x as well as time, an idea originally introduced
in [53]. The most interesting balance between the various effects occurs when

K =€
Let us repeat the previous calculation where this time we allow A;, A,, to be
a function of ay, a%, axx, etc. X =ex, as well as a and a*. At O(g) we find

Ui — Czulxx + wgu‘] = (ZiwaTl + 2ikc2ax)ei(kx'_wﬂ + (*), (2.36)
where ar, = A,. In order to suppress secular growth in u;, we must have that

2
k
ar, +%~ ax =0, 2.37)

or that a moves with the group velocity o’ = dw/dk, as calculated from (2.30),
of the wave packet. Then u, =0. At order &2,

2

w i —r
u2tt__(:2u2xx +w[2,u2 =_6__D a3e3[(kx wt)

+ (2i(0aT2 - aT:lT:l + Czaxx + %‘oza:za*)ei(kx—mt) + (*)’

and the Suppl‘ession of secular terms reqllires that
—_ ———P 2 % 0. 2.38

In finding (2.38), we used (2.37) in order to write a1, in terms of axy. Also,
E=e(x—w't), T,=£?t and " is the dispersion d?w/dk” as calculated from
(2.30). Equation (2.38) is the nonlinear Schriédinger equation. Observe that it
contains as a special solution the x independent frequency modulation solution
(2.34) but, and this is a very important but, it is an unstable solution if the
product of the coefficients in front of the dispersion term «”/2 and the
nonlinear term (joZ/w) is positive, a situation which obtains in the present
example. This is the instability which was discovered by Benjamin and Feir
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[51] when they tried to demonstrate experimentally the existence of the Stokes
solution for surface water waves. It is a most important instability as it causes
otherwise monochromatic wavetrains to evolve into a series of pulses. I will
discuss the nature of this instability in more detail shortly.

For now, however, I want to return to the reasons for the ubiquity of the
NLS equation and show how all the linear terms in the equation have a
universal structure. Consider the equation

o o0
L(—,——)u =N@u? u3,... 2.39

o 7 ( ) (2.39)
where Lu and N(u? u® ...) are constant coefficient linear and nonlinear

operators on u and its derivatives. Let the linear portion of (2.39) admit
sinusoidal solutions of the form

u=ae'*9, (2.40)
where

L(—iw, ik)=0 (2.41)
is the dispersion relation giving @ as function of k or vice versa. Since (2.41)
holds for all k, we can deduce that

—iw'L,+ilL,=0, (2.42)
‘iﬁ)"Ll - w'lel + 20)'L12 - L22 =0 (2.43)
by differentiating once and then twice with respect to k. L, is the derivative of

L with respect to the jth argument. Now, let us seek solutions of (2.39) in the
form

u(x, t)=e(up+euy +e’uy+- - ) (2.44)

with u, given by (2.32) with a a slowly varying function of position and time. We
note that L{(3/dt, 8/dx), under the multiple time scale algorithm, formally
becomes

L(_?_+8_(:)_+szi _a_+8_a_)
ot aT, T, ax aX

12 2) s o, 2)
o ax) © YoT, *aX
a 1 & 8% 1 8%
+ 2(L —+=-Ly—+L,——+=-L —)+ .
C\MAT, 27T T2aT,0X 2 PaX? (2.45)

which we write as L@+ eL® +£?L®, Iteratively solving (2.39), we have

a d
O = —Jy,= 2.46

L (at’ax)u" 0 (2.46)
with solution

uo=a(X, Ty, Ty, . . Je' 0 +(*) (2.47)
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with (2.41) holding between & and k. Next at order &,
LOu,=—~LPuy+N(ud). (2.48)

What are the secular terms? They are those terms on the RHS of (2.48) giving
rise to a solution u; which grows algebraically in x or t. They can be
recognized by the fact that they have an x, t structure which belongs to the null
space of L®. For example, L‘’u, belongs to this class as L@LPy,=
L®L®y,=0. Which terms in N(u2) belong? The term u? itself contains second
harmonics aZe**~“® and mean terms aa*. But, since the system is strongly
dispersive, for almost all k, @(2k) # 2w(k) and therefore L @eZ® >0 L, Now,
the constant solution aa* may indeed belong to the null space of L'®. I it does
and if N(u?) is nonzero, we must include in the zeroth order approximation
a mean term which slowly varies with x and t. In this situation, the “wave” €° is
the third leg of the triad in a triad resonance (see Section 2f).

What happens more often is that N - aa™ is zero to this order. This occurs
because the equation has underlying symmetries like Galilean invariance which
makes it impossible to force a mean flow directly. (For the sake of an example,
think of N as 9/dx.) On the other hand, due to the slow dependence of the
envelope on x, a local mean flow, which has the form £%(8/6X)aa*, can arise,
and unless removed, cause a secular response at the £ level in u,. Such a term
need not violate any overall conservation property. In one £ ' patch, it may
increase the mean level; in the next patch its parity can change so that no net
“mass” is added to the system. I stress its potential presence, however, because
sometimes it is easy to overlook it. In order to account for this effect we
include a mean contribution as a homogeneous solution b in u; (or simply in u,
at order g, same difference). This mean term b then will contribute to potential
secular behavior &'**~? at the O(e?) level in u, through the quadratic product
N(uyu,). Removing secular terms at O(e?) then leads to a coupled system of
equations in a, the wave envelope and b the slowly varying mean. Sometimes b
is expressible as a constant times aa*; sometimes it is not. We will meet both
of these cases in the exercises and I will also point you to three concrete
examples in physics where these effects are important.

For now let us assume that the mean flow is not in the null space of L© as,
for example, would be the case if L=2%/at>—c?9*/0x”+ w>. Then the only
secular term in (2.48) is L™”u, and so we must choose the dependence of a on
X and T, such that L®u,=0, namely

da da
Li—+L,—=
YoT, Yax

But from (2.42), L,=+w'L, and so if L; #0 (which we assume)
a=a(X—-o'T,, T,). (2.49)

0.

We then solve for u,, which contains second harmonics and perhaps a mean
term proportional to aa®. At order £, the secular terms which are nonlinear in
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a and a* arise from the quadratic product uyu, and the cubic product ug.
These lead to a term which we write as BL,a’a*. The linear terms which are
secular are of the form I.®u, which, when we take account of (2.49), may be
written as a product of e'**™? with

L, a%%“L (-;- w’zL“—w'L12+%L22):—i—;2.
But from (2.43), this is equal to
1 (fe e Fa)
oT, 2 8Xx?
and so the universal form of the NLS equation is
EBT% = '—;’— gz‘—; +iBa’a* (2.502)

where a is a function of é=g(x—o't) and T,=¢%t.
In higher dimensions, I will leave it as an exercise for you to prove that
(again assuming the mean is nonsecular)
da i« o a

aTZ 2 r.s akr aks agr ags

. 2
=iBa’a®,

where & w/dk, ok, is the dispersion tensor, £ = &(x, — w,t) and w, = dw/dk, is the
component of the (vector) group velocity in the x, direction.

Let me also say here and emphasize by way of an example in the exercises
that the roles of x and ¢ are interchangeable. We could equally well look for
solutions in the form a(e(t—k'x), £?x) with k'=dk/dw = 1/(dw/dk) and the
coefficient of the dispersion is then ik"”/2. This formulation is convenient when
one or both of the parameters ¢ and w;‘;, like the strength of the torsion wire
or the length of the pendula in the original example, is a slowly varying
function of x.

Equation (2.50a) belongs to the class of exactly solvable models. The transfor-
mation

" T2

2

_{|B
Ty q= ;;a

£=X,

puts it into canonical form
q, = iqxx +2isq’q* (2.50b)

with s =sgn (B/w"). We show in Chapter 3 how (2.50b) can be incorporated into
an inverse scattering framework. For s =11, the asymptotic solution of the
initial value problem for (2.50b) consists of a sequence of envelope solitons

Q(X, 1’) = 27] sech 27](X+4’U‘r —XO) exp (_ZiUX—4i(vz-7]2)1— _ i¢0)
(2.51a)
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and radiation modes. For each soliton, the original field u(x, t) has the form

y

u(x, t)=2

em sech 2en(x — @'(k —2ve)t — x,)

- expli(k —2ve)x ~ iw(k — 2ve)t + 2iw"n %2t} (2.51b)

This expression points up an essential weakness in the NLS equation as a
model for physical problems. Whereas the velocity of propagation of the
oscillatory phase is amplitude dependent (depends on 7), the velocity of the
amplitude pulse is not. To be sure, the soliton parameters v, 7 are determined
from the initial data (as are xg, ¢g) q(x, 0) (they are the analogue of the & =i,
for the KdV equation), but it is clear that the velocity of the argument of the
hyperbolic secant is the linear group velocity of k —2ve. The difficulty is that
expansion has been carried only so far as to give correct phases to O(g?); but
there is an overall factor of £ on the phase of the hyperbolic secant. What we
would really like is the expression for this argument to continue to order &3,
that is, take the form

2en(x — o' (k —2ve)t — O(£2)).

The last term then would depend on 7. This can of course be done, but if one
does, one obtains a new governing equation, a perturbation of NLS which is no
longer exactly integrable. Nevertheless, in certain circumstances, it is necessary
to forego the mathematical convenience of exact integrability in order to
capture the essential physics of the system one is modelling. This point can be
illustrated dramatically if one studies the tunnelling properties of solitons. For
a discussion, I refer the interested reader to reference [52].

Exercises 2¢.
1. Show that the period of the pendulum which achieves maximum amp-
litude A is given by

4 [ d
T=——I ———‘———'—__L, m2=Sin2é,
wp Yo V1—-m?sin? ¢ 2

Show for A small that the period agrees with that predicted by (2.34).

2. Derive the NLS equation for the following examples.

(@) thy— U +iu(l—uu™) =0, u a complex scalar field.

(i) u, + U, = —6aeun,. In this example, note that u = constant is a solution
of the linear equation,

up=ae®+*), 0=kx—ot, wo=—k>
At order g find ar,—3k’ax=0 and u,;=b(X, Ty, To)+(a/k>)a%e*® +
(a/k®a**e %", At order €2,
oug NPuy,  ouy _ %u,

Un Uy = ——2—
20 T T, ~oxaX? 8T, ~oxaX

axX

d 0
—60— (ugu;)— 60— aa*.
ax
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Eliminate terms on the RHS proportional to e*, e° with the choice of a,, and
br,. Find by =—6a(aa®)x = (-2a/k?)(aa™);, which implies that b=
(—2a/k*)aa*. Also find ar,+3ikaxx —(6a’/k)ia’a™ = 0. Observe in particular
how the nonlinear term comes from the sources, ae®® - a*e™ and ae® - b.
Observe also that if you forgot the contribution from b, the sign of the
nonlinear term would be the opposite, which would lead to completely errone-

ous conclusions.

(iii) Uy — C2 Uy + Yl = EBUL,,
u,= ae +a*e -+, 0=kx—ot  ©°=c’k>+yk*,
—iB 2,2i8 iB %2, —2i8 '
U =—— Wpe——a™e ", ar +o'ax=0.
U124k 12vk T x
At O(g?), remove secular terms and find
iw” iBk? iB°k?
arto'a —s(——a ———aby + aza*):O,
T x 2 7 20 T 12y
by — *byx = Bk*(aa™)y, T=gt, X=¢gx

Let by = p and rewrite as

, " iBk: B2
ar+o'ay— s(—z— Oxx =~ —ap + 2o aza*) =(Q,

prr— pxx = Bk*(aa™)xx.

Compare this example to the interaction of Langmuir waves and ion acoustic
waves of a plasma. In this context, they are called the Zakharov equations [58)].
The RHS of the equation for the mean field b(X, T) is due to what is called in
the vernacular of plasma physics the pondermotive force. We can write this
equation as

Bk*((aa®)xx — (M cH(aa®) 1) N

] _ ml2 / CZ

because (aa™)r=—w'(aa*)x+O(g). Therefore the part of the mean field

induced by the slow gradients in the envelope of the fast field can be solved
for:

PTr‘CZPxx = O(¢),

_ Bk”aa™

mrz_cz M

Note in particular the possibility of resonance, namely, when the group velocity
of the fast field equals the phase velocity of the long wave or mean field. The
reader should consult the papers by Benney (Stud. Appl. Math., 55 (1976), pp.
93ft.; 56 (1977), pp. 81-94) and Newell (SIAM J. Appl. Math., 35 (1978),
pp- 650-664), for further discussion of the importance of this resonance. One
now rewrites the equation for the envelope a(§=X—o'T, 7=€T),

i(x)" lek 2 (1)"

Tv——a T~
2 %12y w?-c?

a’a*=0.
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Finally, a comment about the Zakharov equations. If, in the present example,
we had included a second spatial dimension

U — ZVPu+vyVu=¢B Vu - V(Vu),

V = (3/dx, 8/dy), then one cannot simply eliminate the mean p in terms of aa™.
The reason for this is that in the two-dimensional case (see discussion in
Section 2d), the “solitary wave” collapses and the argument of the envelope no
longer is uniformly constant on the group velocity characteristic, except at the
initial stage. As the envelope and mean field develop into collapsing spikes, the
premises on which the equation is derived are no longer satisfied and it is
necessary to include other terms which have been neglected in the analysis
here. However, the behavior of the Zakharov equations are often taken as a
guide as to what happens in real situations.

Examples (ii) and (iii) are also prototypes for the water wave problem in one
horizontal space dimension. With the aid of references [54] and [55], derive the
NLS equation .y

, iw P
a,+e ax——z— a,+tipaa*=0

for surface gravity waves. In this equation,

w?=gkT, T=tanhkh, S=sechkh,

1 {97“‘—10T2+9 1 (w2 wo'S? ghS“)}

_ — 2 — +
=7 wk 8T gh—o? \K2T2" kT2 T2

where n(x, 1), the surface displacement is a/2e'** "+ (¥), g is gravity and h

the undisturbed depth. Note B changes sign at kh =1.36. This means that
solitons form for deep water gravity waves (kh>>1.36) but do not when the
water gets shallower. For a discussion of the case of two horizontal space
dimensions, the reader should consult Benney and Roskes [56] or Davey and
Stewartson {57].

(iv) The following example is based on an experimental observation of Wu,
Keolian and Rudnick (preprint) of the existence of what they call hydro-
dynamic polarons in a water trough resonator. The idea is roughly this. The
linear dispersion relation for waves in a rectangular tank is w”= gk tanh kh
where k = (kZ+k2)"*. Suppose that the tank is oblong with the y dimension
L, being small (2.54 cm) and the x dimension long (38 cm). In this experiment
the mean depth is 2 cms. but the water is deep in the sense that kh=3. The
lowest mode in the y direction is k, = «/L,. Note that if the driving frequency
w is less than the natural frequency of the (0,1) mode k, =0, k,==/L,,
o}y = gk, tan k;h, then there is no propagation in the x direction and the wave
is trapped at an end wall with displacement

TI(JC, Y, t) o« e——(-k,%)”’-x cOS kyy(Ae_iwl + A*e—imt)’

where 0, >o?= g(k2+k2)"? tanh (k2+ k2)"*h, whence k2< 0. The above au-
thors find that due to nonlinear effects balancing dispersive effects, one can
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have soliton shaped pulses which are located at arbitrary points along the
channel. They mention that they are surprised to find local pulses when the
excitation is uniform in x. This is not at all surprising for, as we shall see in the
next section, the uniform response is unstable and the instabilities grow into
solitons of the nonlinear Schrodinger equation. In examining this phenomenon,
I shall use the model by Larraza and Putterman (preprint) who note that the
NLS equation obtains and that therefore hyperbolic secant solutions are
possible. Again, however, they fail to understand that they are inevitable.
Consider

u, — cVu+yVtu=eV¥au?, 0<e«l,
with

3 - 62 62

u=ulxyt), \Y, —ax2+ay2’

uo= (A(X, Te “*+(*)) cos ky,
u, = B(X, T)+(Ase 2 +B,+ Aje?™) cos 2ky,
where we choose k(=k,) and @ to be such that
w?=c%k?+vk*— £*x = w3, — £7X.
We choose the time dependence of A(x, T), where X =ex, T=¢l,
Ar=fit+efp+---

and B(X, T) in order to eliminate secular contributions proportional to ¢* and
€® in u;, u, and u; and u; respectively. A little calculation shows f; =0 (the
group velocity (dw/dk,) (0, k) in the direction of slow modulation in zero)
_AAF

CZ+4'yk2’

—Q

T oyk?

A2 AZ, BZZ

. FA aAA*  kZAA*
2iwA; + el 2 == — vA — ak? - — %)=
wA; z—:(c e XA —ak A(ZB e C2k2+4'yk4))+0(8) 0,

82

BTr—CzBXX = Olg}“{‘z'AA*-F O(e).
As in Example (jii), we can add (—aofc?)9*/6T?) AA* to the RHS of the last
equation as this term is O(g?). Hence

B(X, T)= -5 AA*,
C

and if 7=€T,
2iwA., +c2Axy +(@?k*BAAT—)A =0
with
21 1
b= oy i

positive if v is. There are several points to note.
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(a) Since the product of dispersion in the modulation direction x and B is
positive, the asymptotic state consists of solitons with the form (2.51a).

(b) They will only move (i.e. v# 0) if the initial conditions are nonuniform in
a special way or if external forces are applied. Their velocities do not depend
on amplitude. Their locations and amplitudes are found from the initial
conditions.

(c) The x factor is removed simply by changing the phase of A.

And now a caveat. The experiment described by Wu, Keolian and Rudnick
is not performed by simply shaking the trough (exciting the lowest sloshing
mode) and allowing the surface to develop. Dissipation necessitates that the
trough be continuously driven to overcome the loss. This means that one
should add forcing and damping terms E—I'A to the right-hand side of the
NLS equation. (If the frequency mismatch term —xA is removed, E gains the
phase factor e'*', A= (—ix/2w)e?.) The response of the forced, damped system
can simply be the creation of a soliton whose amplitude is driven to a fixed
value (see [45]). However, depending on the values of E and I, other
responses are also possible. I do not plan to discuss them here but the
interested reader should refer to the paper by Bishop, Fesser, Lomdahl and
Trullinger in Physica D, 7 (1983), pp. 25911. that treats the forcing of breather
solutions of the sine-Gordon equation. Low amplitude breathers of that
equation are NLS solitons.

(V) uy—c*u, +w2(e’x)u=e>yu>. vy, ¢* constant. This time we will look for
the evolution of the wave packet in space. The relevant scales are

X,=¢ex, X,=¢’x, t,T=¢t

22
Uo=ae® +(*), 6= jkdx—wt, PN Ml H0.0 8
c
Note that
PUo_ o 2 . 2(9; : *
2 (—k*a+2ikeax, + e*(2ikax, + ax x, + ikx,a)) + (¥).
At order &,

1 [*
ap,tw'ay,=0> a=a(T-—-—j k' dXz),
£

where k' = 1/’ = dk/dw. At order €2, find
ik" iy , , 1
+— = a*——
6T T ok T2k
As an additional exercise, use appropriate transformations to put this equation
into canonical form q, —iqee —2iq°q* =I'(k./k)q. What are T, 7, 6, q? For a
reference see [52].

(vi) The envelope equation for a wave instability. Suppose the L in (2.39)
depends on a stress parameter R in such a way that the wave solution

kxza.
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u(x, 1) x '™ g=w—iv grows or decays depending on whether RZR..
The parameters v and « are determined as functions of k; and R by the
complex algebraic equation L(—iw+w, k;, R)=0. The critical surface is the
surface in k;, R space where v =0. The critical values of k; and R are those
values on this surface where R is minimum. This is the lowest value of the
stress parameter for which wave-like solutions grow. Use the ideas of this
section to show that the (slowly varying) envelope A(x; t) of the growing wave
is governed by the complex envelope equation

A & dwaA 1 (av #R . 62w> FA
04,y dwdd 1y (2 IR
R ok, ok, ok, ok,

at [Tk ex 27 ax; dx
ov Jw
=l — — +iB)A2A®,
(aR zaR)RCxA (B, +iB)AA

The original field is written u(x, t) = eA(X, t) exp (ik. - x—iw(R,)t) +(¥)+ O(?),
R=R_(1+£%), and k, is one of the set of values on the critical surface
which correspond to R = R.. (Often, there is a degeneracy in the most critical
wavevector due to a symmetry in the original system; e.g., convection in an
infinite horizontal layer has a rotational symmetry.) The coefficients in the
envelope equation are estimated at k.. Similar comments to those made
earlier in this section about the necessity to include the excitation of the
mean by slow gradients of AA* may still be relevant.

After you have read the following section on the Benjamin-Feir instability,
show that the x independent solution (take only one spatial dimension)

e ()

is unstable in the Benjamin—Feir sense if

Bi’Yi + BrFYr <0

_ @) _(ﬂf’z_R>
Ykl YT GRS

Further discussion can be found in [127].

where

2d. The Benjamin-Feir instability. Recall that the underlying wave field
u(x, t) is given by
u(x, t)=ae'®* O+ (*), 0= ogko),
where a is a function of £ = e(x — wgt) and T = £t and satisfies

ar = i%—o Gee +iBa’a”. (2.52)

Write a = Ae*®. It is natural to define the local wave number k as the x
derivative of the total phase and the local frequency as the negative of the ¢
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derivative of the total phase 6 = kox —wyt+$(& T)
k=kot+edy, 0 =wy+ewod; — 2P
Note the relation
k,+ o, =~ €2 Py + €3 pr + €70 P — 7P =0, (2.53)

which expresses the conservation of the number of waves. We will write the
change in wave number ¢, as ¢K. Now the imaginary part of (2.52) gives

g (Ag 2) 2
=—|—-K?]+BA
¢T 2 ( A B ?
which when differentiated with respect to & gives
” A
2 \A/:
where p= AZ Equation (2.54a) is the relation for conservation of waves
(2.53), since
1 w} A
- + 'K + 2(_ "2 2____Q__£_§)-
@ = Wo+ Ewy € 2w0K BA 2 A

(Recall 3/t = £ 8/0T — ew{ 8/9¢, 8/dx = € 3f3£.) On the other hand the real part
of (2.52),

(A2 +wl(AZK), =0, (2.54b)

is the equation for conservation of wave action.
Next, look at the monochromatic solution

A=A, & = BAZT + constant, (2.55)
which means that
k=k0, w :(D()_‘BA%GZ.

This is the Stokes wave. Test its linear stability by setting A =A,+ A, K=K
and find from (2.54)

wg Aee&
Ky =2BA +——=,
(D" _
AT - - "22 AOKg,
or
A " A2 A wgz A
Therefore, if A « ¢*&+°T,
2 2172 Wy 4
o= BwiAFK*—— K*, (2.56b)

4
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and so if Bw{>>0, the solution (2.55) is always unstable to long waves in the
range 0<K?<4BA}/w). The maximum growth rate occurs when K?=
2BA3/wy and is equal to BZAZ. The reader should read reference [59] by
Lake, Yuen, Rungaldier and Ferguson who investigate this instability experi-
mentally for water waves. He should also read the original paper of Benjamin
and Feir [51].

One can also understand the reason for the instability using the following
argument. Suppose one has a monochromatic wave with constant envelope and
frequency w,— BAZe? which is perturbed at a point P so that the amplitude at
P is less than A,. Then if 8 >0, w at P is greater than o to the left of P. Hence
o, >0 in this region and by conservation of waves k, <0. Hence k decreases
and if wg>0, w{ also decreases. To the right of P, w increases. Hence the
regions to the left and right of P continue to separate and the amplitude
perturbation deepens. For Bwg<0, the perturbation is confined and smooths
out,

So, what happens in practice to a wave train of surface gravity waves which is
generated at a source S with a paddle oscillating at an almost constant
frequency w? If hk >1.36, Bw" >0 (see Exercise 2¢(2)(ii)) and a monochroma-
tic wave train is unstable. Because of the way the problem is posed, it is best to
look at the evolution of a in X=¢%x as function of T=e(t—x/e’). If the
duration of the paddle motion is finite, then the resulting wave packet breaks
into a series of special pulses, the solitons of the nonlinear Schrodinger
equation, the formula for which was given in (2.51). If on the other hand the
paddle motion continues indefinitely at a constant amplitude or in some
periodic fashion, then the relevant initial-boundary value problem to solve is
one in which the amplitude a(X, T) is periodic in T. Therefore, as the profile
evolves in X, one would expect to see the very same type of recurrence
previously seen for the KdV equation. The only difference is that here the field
is periodic in time and quasiperiodic in space. What happens, then, is that first
the wave train breaks into a number of separate pulses but then these recollect
at some later position and reproduce the initial (at x =0 as function of time)
conditions. This recurrence has indeed been observed and I refer the reader to
the Yuen-Ferguson paper [60].

If Bw” <0 and one makes a small long wave perturbation in the envelope,
then this perturbation propagates according to the KdV equation. The reader
can observe the linear portion of the lattice equation (1.3) in (2.562a). As an
exercise, I will ask you to include the nonlinear terms and derive the relevant
KdV equation.

The Benjamin—Feir (or, as it is sometimes called, the modulational) instabil-
ity 1s widespread and plays an important role in various nonlincar wave
phenomena. Simply put, if dispersion and nonlinearity act against each other,
monochromatic wave trains do not wish to remain monochromatic. The
sidebands of the carrier wave can draw on its energy via a resonance mechan-
ism with the result that the envelope becomes modulated. In one space
dimension, this envelope modulation continues to grow until the soliton shape
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is reached. At this point, nonlinearity and dispersion are in exact balance and
no further distortion occurs.

In two dimensions, if the product of 8 with the dispersion tensor 8w/dk, 9k,
r, s=1, 2 is a positive definite matrix, the focusing process is never halted and
continues until the pulse achieves locally an infinite amplitude which it does in
finite time. In the context of nonlinear optics, such filamentation has been
observed and the form of these filaments is discussed in Zakharov and Synakh
[61]. Consider q(r, t) satisfying

2ig,+V’q +Blgq®)°q=0

which has the motion invariants
N(g, q™) = Iqq* dx,

P(q, q%)= I %(qvq*— q*Vq) dx,

Hig,a%) = | (WaP - 1aP) ax

The spatial dimension of the problem is n and the strength of the nonlinearity
is measured by o. For o <2/n, one can show the solution q(r, t) exists for all
time. In the case of interest, n =2, o = 1 so that ¢ =2/n and this value of o is a
critical value. In one space dimension, the critical value of o is 2. Now, if
N{g(x, 0), g™, 0))<N,, a value calculated by inserting into N(q, q*) the
spherically symmetric solution q(r, t) = e*”>?R(jr]), with R(jr]) everywhere posi-
tive, R'(0) =0, R(<)=0 and satisfying V2R — R + BR?***' =0, then again q(r, t)
exists for all time as long as q(r, 0) obeys certain weak conditions f(q|*+
Vgl») dx<ce,
The reader should prove for himself that

2

— I r’qq™ dx=4H. 2.57)
dt

Note that if g(r, 0) is such that H, a constant of the motion, is negative (H is
exactly zero when q(r, t)=e“?R([r])), then the intrinsically positive quantity
§ rPqq* dr becomes negative in finite time. This cannot happen and the
conclusion is that g(r, t) must have developed a singularity at |r| = 0 before this.
It is the nature of this singularity which is discussed in reference [61]. The
thesis is that near the blow up time t = f;, for n = 2, the amplitude of g(r, t) has
an axially symmetric shape proportional to AR(A jx]) with A(f) = (t,— £)"*>. In
order t0 accommodate the extra number density, the difference between the
initial number density and that carried by the solution AR(X Jr|), namely N,
one has to add to this central spike, a shelf which is almost constant in |r} for
large distances and then drops off suddenly at some, as yet, uncalculated value.
These last comments are based on observations of numerical experiments and
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some recent theoretical work. The exact structure of the blow-up solution at
the critical value of o =1 is still unknown.

It is also not known whether the Zakharov equations in two spatial dimen-
sions,

ar—ieVia—igpA =0,
2 o? (2.58)
272 2 * 2
—cVp=V(AAT), Vo=t —s,
prr p=VI(AAT) a2 ay?
blow up in finite time. For these, there is no relation equivalent to (2.57).
Finally, if, as in the case of deep water gravity waves, the relevant NLS
equation has an indefinite dispersion matrix, as in

ar—ia,, +ia,, —2ia’a*=0,

then the soliton which would form in the x direction will also destabilize to a
y-dependent disturbance, but this breakdown is much less dramatic than the
process described in the previous paragraph. The reason for the instability is
that the underlying carrier wave feeds some of its energy to neighboring
oblique sidebands which together with the original wave form a quartet
resonance. (See Whitham’s book [55] for a discussion of the quartet resonance
mechanism suggested by Phillips.)

Comment. It is remarkable that the instability of the Stokes wave was not
discovered until the experiment of Benjamin and Feir. (The reader should also
consult M. I. Lighthill, Proc. Roy. Soc. A, 299, pp. 28-53.) The formal method
of constructing nonsinusoidal periodic solutions had been proposed by Stokes
in 1849 (G. G. Stokes, On the theory of oscillatory waves, Trans. Cambridge
Phil. Soc., 8, pp. 441-455) and a proof of convergence of the series for sufficiently
small slopes was given by T. Levi-Cevita (Math. Ann., 93, pp. 264-314) in 1925.
For a good summary of the role of the NLS equation in describing the
instability and for comparisons with experiments, the reader should consult
reference [59].

Exercise 2d.
Include the quadratic nonlinear terms in (2.56a) and show

"z

- - w -
Aqr+ ngAéAgg = —_ZO" Ageee+ Q,

where

wnz . - 1 . s
0= ——20— AoKK, ) —Bwi Ac(AA), — A (AA7)r — 03(AK)er.
0
Note that if Bwy<<0 and we look for unidirectional solutions,
A=AX=¢-cTeT), c2=—BwlAL

. —2 - -
E=—PAAk  0=-2BufAfAD:
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and the nonlinear version of (2.56a) is the Boussinesq equation. Notice that
solitons of the resulting KAV equation are only possible when A <0. Since
these represent local reductions in the intensity of what was a monochromatic
wave, they are called dark solitons. Also show directly that if Bwg<<0, (2.52)
has solutions
. iV iyt VAl
“a=e eXp('¢+2g 2T )

V 113
p>=p3—a’®sech? a(f - ;)O T),

h
¢x='p_2, h2:P8(P(2)_‘a2),

2
Y+'Z'=3P%—a2-
Note as o> —p2, h -0

n
Vwo

p — po tanh po(f - T), ¢ = .

2e. Whitham theory [55]. In the mid 1960’s another ingenious theory
dealing with the propagation of fully nonlinear, almost periodic wave trains
was developed. The theory is associated principally with the name of Whitham,
although some of the ideas were developed independently by Kruskal in his
efforts to understand the wiggly region which occurred in connection with the
solutions of the Fermi—Pasta—Ulam lattice. The idea is quite simple. Suppose
there exists a stable 27r-periodic travelling wave solution f(®, A), ® = kX — T,
A a constant amplitude, arising as a constant of integration, to a nonlinear
partial differential equation. Then one can develop a wider class of solutions
which describe the slow modulation of this wave train by allowing the former
constants, wavenumber ®x =k, frequency ®.=-w and amplitude A to be
slowly varying functions of position X and time T. Equations for k, w and A as
functions of x =X, t=€T, 0<e<« 1 are found as follows.

First, from the fact that w and k are derived from a potential, the phase 0,
one has

ki+aw, =0, (2.59)

a conservation law expressing the conservation of wave number. Second, when
one substitutes the solution ansatz into the partial differential equation, the
leading order part is a nonlinear ordinary differential equation in ® for f(®).
We know this has periodic solutions because of our assumption that the
original partial differential equation admits periodic travelling wave solutions.
The imposition of a fixed periodicity (27 is usually chosen) gives an algebraic
relation between w, k and A, called the dispersion relation. (It is crucial to
impose a fixed periodicity. If one allows it to be a slowly varying function, it is
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impossible to control the growth of the later iterates.) Because these parame-
ters vary slowly, there are O(g) terms, containing first derivatives of k, » and
A with respect to x and t, left over in the partial differential equation. The
condition that the next iterate, which satisfies a linear ordinary differential
equation in © with coefficients depending on f and its derivatives, is also
2r-periodic, imposes a solvability condition on the equation. This condition is
a first order partial differential equation in k, A and @ and expresses the
conservation of the wave action. Thus we have three equations, one algebraic
and two differential, for the three unknowns k, w and A.

Now we have already seen in Section 2c¢ that the weakly nonlinear envelope
of a carrier wave also contains three parameters A, k and w (see equations
(2.49)-(2.53)) and they are connected via the NLS equation. Are the two
descriptions equivalent, the latter being merely Whitham’s theory in the small
amplitude limit? The answer is no. Clearly the NLS equation being a small
amplitude theory cannot include Whitham theory which is valid for arbitrary
amplitudes. On the other hand, in Whitham theory the amplitude is deter-
mined algebraically by the nonlinear dispersion relation whereas in NLS, it has
a life of its own as it were, and satisfies a partial differential equation. Why is it
that Whitham theory does not relax to the NLS equation? The difficulty is that
when the amplitude is finite, the solvability condition at order £ changes in the
sense that the null space of the linear operator acting on the first iterate of the
solution is only half the size (dimension one) of what it would be if A were
small. This results in only one equation, the conservation of wave action, which
is an equation for the phase of the wave and corresponds to the imaginary part
of the NLS equation which gives the evolution of ¢, the phase of the complex
amplitude. The amplitude A is already fixed by the dispersion relation. What
happens when A is small? In that case it turns out that the dispersion relation
must be augmented in order to satisfy the extra solvability requirements. The
extra terms contain derivatives of A and so what was originally an algebraic
relation giving A as function of @ and k now becomes a differential equation
for A. This equation corresponds to the amplitude part of the NLS equation.
‘We now present a version of Whitham theory which is uniformly valid as the
amplitude becomes small and which unifies it with the NLS equation. The ideas
I use were motivated by the expansions used by Ablowitz and Benney [62] in
their investigations of a multiphase Whitham theory. Indeed both Ablowitz and
Chu and Mei [63] noted the area of potential breakdown of Whitham theory
and identified the problem terms. Moreover, Whitham himself shows how to
include these higher order dispersion terms working from the averaged Lagran-
gian formulation (see [55, p. 522]).

It is interesting to note that exactly the same types of difficulties occur in
the macroscopic behavior of systems far from equilibrium which can be
described in terms of an order parameter. Away from the phase transition, the
amplitude of the order parameter is given algebraically by the modulus of the
phase gradient (an analogous expression to the nonlinear dispersion relation or
eikonal equation) whereas near critical values of the bifurcation parameter
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(which measures the stress—think of it as the Rayleigh number in the context
of fluid convection or as the temperature in magnetism—imposed on the
system), the amplitude becomes small and satisfies a partial differential equa-
tion. This equation is analogous to the NLS equation and, when combined with
the corresponding equation for the phase of the order parameter, is known as
the Ginzburg-Landau equation. The reader interested in these remarks can
consult [64] for further discussion. We now illustrate these comments by using
two concrete examples.

The choice of the first example is particularly simple as it admits solutions of
the form f(@) = Ae'® and this makes all the computations explicit. Consider a
complex scalar field u(X, T) described by the equation

Urr — Uxx + 01— Buu®)u =0. (2.60)

We look for solutions with the form

u(X, T)=f(0®, A)+eu; +€*u+- - -, (2.61)

where f(@) = Ae'® and Oy =k, O =—w and A are functions of x =X, t=¢T.
The derivatives 6/0T, 9/6X can be written —w 9/30® + € 9/ot, k 3/00O + € 9/9x re-
spectively, and when substituted into (2.60) give

hG ) & F )
2 ——— — —
{(w —k) a®2 '8(2"’ 5100 30 X moe 20

? &
+e (a—tz_'a'_)"‘w (1— Buous—eB(uguT + ugu)—e B(u0u2+u1u1+uou2))}
X
(u0+ 8u1+ 82u2+ b ') =0. (2-62)
The order one balance in this equation is

auo

(0?- k2) s+ 01— Bugud)u,= (2.63)
whose solution
— A,vO 2_ “’p(l BA?)
Ug=Ae™®, v ol k2
is only 27r-periodic with no smaller period when »*=1 or
o’ —k*=w?(1-BA3). (2.64)

If we had allowed the period to be an arbitrary function of x and ¢, then when
we calculated dug/dx there would be terms of the form i, ® appearing
at the next order and it would be impossible to find a u; with the same period
as up. This is analogous to the first step in the WKB method, in which it is
very important to choose the correct fast time scale.

Equation (2.64) is the dispersion relation giving A as function of @ and k.
However, in anticipation of what is to come we will, following the formulation
suggested by Ablowitz and Benney [62], consider (2.64) to be the leading order
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term in the amplitude expansion

0’ —k?— 01— BAY) =g+ gD+ - . (2.65)
Now (2.62) becomes

& a* a3 a8 F
2 2 __+ — + —)
{ o(1-BA%) l) ’e(zwa:a(a @ ®+2kaxa® k20

&’ > &
+(8g(1)+82g(2))é@+8 (;~5x—) ewa(uou1+uou1)

— &’ w’B(ugu; + ugu, + ulu”l‘)}
- (Ut euy+ e%uy+- - ) =0.

The order one balance gives up=Ae'®. The next order yields
2(1 BAz) + 1)“1 iﬁ(uouf"' u;(l)‘ul)lio

- '—e~ (@A), +(kAD,) +gPAe®,

a) _

from which we obtain g’ =0, u, =0 and

(@A), +(kA?), =0. (2.66)

The choice (2.66) is necessary as otherwise u, «®e'®; the choice g¥'=0 is
convenient and then u,=0 as a consequence. At order £,
2 2

& a g
2(1 BAZ) + 1)“2 P} B(unu2+ u0u2)u0 ele(a_x_i_g;_)A +e|9g(2)A

(2.67)

It is here that the subtlety enters. Notice that any solution u, of the form e'®
annihilates the first term on the left-hand side of (2.67). As long as the
right-hand side is €*® times a real quantity (because A and (uou3 + uu,) are real),
(2.67) is solvable. For example if the RHS were Ge'®, then u, = (— G/2w2AB)e™®
which is 27r-periodic. Notice however that the asymptotic series (2.61) is not
well ordered as A — 0. Therefore this limit is nonuniform. To say things in
another way, the null space of the operator acting on «, is one-dimensional and
spanned by ie’® if A is not small, but is two-dimensional and spanned by 1e'®,
ie'’® when A is. (It is actually four-dimensional when one includes the conju-
gate fields e *©.) In order to facilitate the limit taking process, we will treat 1e®
as if it were secular and choose g(z’ to make the RHS of (2.67) zero. Then,

2 62 62
0’ —k*—ol(1 —BAZ)——(a—tg—ax )A. (2.68)

The evolution of w, k and A is determined by (2.59), (2.66) and (2.68) and, in
fact, in this simple case, the solution u = Ae™® is exact. The RHS of (2.68) is
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only important when A = O(g) and o’—k?—w?= O(s”) whence (2.68) is a
differential equation of A.

Let me reiterate: the term (8%/0t>—8*/9x?) A is not secular in (2.67) for finite
A. Tt is useful, however, if one plans to take the small A limit, to treat it as if it
were secular and incorporate it in the dispersion relation.

The small A, almost monochromatic limit is taken as follows. Let A — €A,
and choose © =y, k =k, 0j—ki= o} by writing

O =koX—w,T+P(x, 1). (2.69)
Then w = wy—ed, k=ky+ed, and the conservation of waves equation is
(00— €d)AY), + ((ko+ £¢,)A?), =0 (2.70)

and the dispersion relation is

e(~2006, - 2koth) + (7~ 8D+ Bue’AP= " (A, - An).  (27D)

The order one term in (2.70) and the order € in (2.71) tell us that both A? and
¢ are functions of x and t in the combination &= x—w{t, w{=ke/we. Let
7= ¢t and then (2.71) and (2.70) become respectively

1-wd® (Agg 2) BwiA*
= |—=- —— 2.72
- 2w, \A L 20 ( )
and
wh—1
A= 2w (2Acd: + Adee), (2.73)
or if a = Ae'* ¢
s N 2 1 a2
a. =X Qg +ip ot a’*a*, wh= =% 2.74)
2 2wq ®g

From Exercise 2c(2)(1), we saw that (2.74) is the NLS for (2.60). So, the term
which Whitham theory neglects, namely (e*/A)(A, — A,,), once included, gives
back the NLS equation and corresponds to the first term in the RHS of (2.72).

Let me now also indicate what happens when one cannot solve for f(®)
explicitly. I will use Whitham’s original model

Urr— Usex + F(u) =0 (2.75)

where I take F to be odd in u and for small u, given by u—yu>. The reader
may work out the NLS description as an exercise. If

u=gea(x—owgt, et)e X oD ¢ (*) ...
with wi—ki=1, wy=ke/we, the group velocity, then
a.= —2—‘ Qg +—;)—‘ a‘a®, (2.76)

where 7=et=¢€?T and é=x—wit = e(X—w{T).
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Next, applying Whitham theory to (2.75), we introduce

6= 661 , x=¢X, t=¢T, (2.77a)
£
0’ k*=g+egV+eg?P+.- -, (2.77b)
u=f+euP+eu?+---, (2.77¢)
and find
2
g ;®£+ F(f)=0, (2.78a)
d2u(1)
¢ gz T F'(Hu® =R, (2.78b)
2.
8 16? +F'(Hu®=R,, (2.78¢)
where
of o f of of
R,=—gW—5+2 +2k + (o + k) —
178 et 20 g K g Tt R g
and
&f FPu® 2u® auh
R,=—g?—=+2 +2k +(w, +k
2= 8 et 20 g o T 2K G ax T TR g
F"(f) 02 (82 62 )
2 It ax? f
Multiplying (2.78a) by f(dffd®) and integrating, we obtain
sefa+V(H)=E, V'=F (2.79)
from which we obtain
g(' df
8 I —= -9, V(f.)=E. (2.80)
2l VE-v(fH

Without loss of generality, we take f to be odd in ®. The dispersion relation is
then

g(-__df
- — =, V(f)=E 81
\[2L VE-vp ) @81

giving E as a function of g and vice versa.
The next task is to develop conditions on R,, R, which allow u®, u® to be
27xr-periodic in  @. Consider

d*v
gd®2

+F'(flu=R, (2.82)
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and write this as a system

av 1 (0)
—=FEV+— 2.8
de g \R (2.83)
where
o 0 1
V= ( ), E= 2.84
Ve —Fé 0 ( )

The matrix E is 2sr-periodic and Floquet theory obtains. In particular, if U, a
row vector, is a 2sr-periodic solution of

au_

de
then, if V is to be 27-periodic, it is necessary that (the proof is straightforward:
just multiply (2.83) by the row vector U and integrate)

J-:T U- (2)(1@ =0 (2.86)

Let @ be a fundamental solution matrix of dV/d® =EV; then ®(O+27) is
also a fundamental solution matrix (it satisfies the equation) and there exists a
matrix M =e®™® independent of ® and called the monodromy matrix, such
that ®(O+27) = P(O)M. The eigenvalues of M are called the Floquet multi-
pliers. If unity is a repeated eigenvalue then at least one of the associated
eigenvectors gives rise to a 24r-periodic solution of the homogeneous equation
(2.83). The rows of the inverse ® (@) satisfy (2.85).

In the present case, we can construct ®(®) explicitly by noting that both
v, =fe and v, =f, + Ofy/2g satisfy the homogeneous version of (2.82). Here
subscripts denote partial derivatives;

~UE, (2.85)

1
f@ fg+£ ®f®
(6)= 1 1
foo fg®+2—g-f®+£®f®(~)

1
det (@)=—E, (differentiate (2.79))

g
and 1 1 1
fg®+2—f®+5_®f®® "fg_i_@fo
Eg —fQG f@

In this case M has a double eigenvalue unity and is equal to

L2
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The necessary condition (2.86) for V to be 2w-periodic is

2
j fo- Rd®=0, (2.87)
0
Next, solve (2.83) by variation of parameters and obtain
© (v [ (s Ofe) - ROV @)+ (et [ for R1OYont@)
v —ClEgOngG 1 CzEgU@) 2\9).
(2.88)
Demanding that v(®) be 27r-periodic gives us that
g 2 1
= +—0 )Rd . 2.89
C2 1TEg J; (fg 2¢ fo ® ( )

Therefore, provided that with this choice of ¢,, the asymptotic series (2.77c)
remains well ordered (this means that the ratios of successive terms remain
order ¢ for all values of the parameters), condition (2.87) is both necessary and
sufficient. When applied to (2.78b), it gives

2

a g
f6dO =0, (2.90)

2 d
— wJ. fo d®+— kJ.
at k ox J
the conservation of wave action and analogue of (2.66). Because f(®) is odd,
the term involving gV is zero.
What happens as the parameter E in f becomes small? A little calculation
shows that in the small amplitude limit

f(@®)=Asin®+35vA%sin30+-- -, (2.91a)
g:]._%’YA2+“', (2.91b)
E=1A%+-. -, (2.91¢)

Now look at ¢,, and in particular calculate its size when one takes for R the
term — (0%/0t> -8°/0x?)f in R,. We note that f, + Ofg/2g=A, sin® is order
A7 lsince gaz=O(1). Also E,=E-- (A*g=—%y+:--.Thus ¢, is order 1/A
and the resulting solution u® is also. This means that (2.77¢) is nonuniform
when A = O(e).

In order to capture this behavior in another way, we do not use ¢, to impose
2r-periodicity on v(0) but rather use g®. We demand

(1)t (5 2o

(there is no contribution of comparable amplitude from the u™ term) and find,
using (2.91),

1
g?P= 1 (A= Ag). (2.92)
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Now, the dispersion relation
2
WP k= 1A (A= A+ (2.93)

has exactly the same form as in (2.68) and the NLS limit is recovered from
(2.90) and (2.93) exactly as before.

Even though Whitham’s theory does not contain the full NLS equation, it
does contain enough of it to exhibit the Benjamin—Feir instability. With A2
given by the dispersion relation, equations (2.59) and (2.66) are a first order
system for k and w. If elliptic, the Cauchy initial value problem is ill posed in
the sense that any perturbation grows exponentially in time with the shortest
waves growing the fastest. If we write © as 6/e and solve (2.59) by setting
k = 6., w =—86,, then (2.66) is (—6,A%),+(6,A%), =0 where A? is a function of x
and t through the combination I = 62— 2. We find

dA?

dA dA?
6 (— 2—202——2)+20 0,0, —+ (A2—2 2 )= . (294
33 A t dl xt t dl exx 01’. dl 0 ( )
The system is elliptic and unstable if
dA?
AZ(A2+2l al )<O, (2.95)

where

1 (fw?—k?
ar= 2 (S 1).
B\ o

For A small, this occurs when B>0 or Bwj>0 since w}=(w3—k3)/w) is
always positive. Because Whitham’s theory does not include the A, term in
(2.56), it does not predict the sideband of the underlying carrier wave which
grows the fastest nor does it predict a finite band of unstable waves. On the
other hand, however, its great power is that it is not a small amplitude theory.

We end this section by asking about some of the physical consequences of
nonlinear dispersion relations. In particular we address the question: Can
nonlinear waves tunnel? Imagine that we have initiated a train of waves of
amplitude A with frequency w into an environment where w, is slowly varying.
Then k(x) is given by

k?=w?*—wZ(1—-BA?).

Suppose initially > >w? but that w2 grows (the pendula in the Scott model get
shorter). No lincar wave can propagate past the point where w,=w. But if
B >0, then the point at which w?(1— A?) = w? is further into the medium than
the caustic for linear waves. Does this mean that nonlinear wave trains can
tunnel without loss through barriers where linear waves are severely at-
tenuated. The answer is both yes and no. It is no because we have just shown,
at least in the weak nonlinear limit, that whenever B >0, the monochromatic
nonlinear wave train is unstable. However, what happens is that it breaks up
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into pulses, the solitons of the NLS equation, which do exhibit lossless
tunnelling properties. The reader is referred to reference [52] for more details.

For large amplitudes, (2.95) becomes 3A%—-2/8<0. Thus even though
B >0, for waves of sufficiently large amplitude, stability is regained.

Many interesting questions remain open when the Whitham equations are
hyperbolic, although some very beautiful work has been done. See Whitham’s
book [55], the beautiful and elegant paper of Flaschka, Forest and McLaughlin
[65] (they discovered that the Riemann invariants are simply the spectrum of
the periodic KdV problem) and the intriguing work of Lax and Levermore
[66]. Principal among these questions are questions related to the long time
behavior of the system. Do shocks evolve? If they do, what do they mean?
How are new phases introduced? (The work of Lax and Levermore suggests
that the (x, t) plane is split into regions in each of which a one phase or two or
higher phase flow obtains.) What other long time behavior can there be? My
Ph.D. student Krishna [67] integrated the Whitham equations numerically for a
broad class of initial conditions in which the envelope of the fast oscillations
decayed at infinity, in which circumstance inverse scattering theory obtains. He
found that, in the case of one phase solutions, various members of two of the
three families of characteristics became parallel and straight as time advanced.
The equations then take on a parabolic rather than hyperbolic form. The lines
in (x, t) space along which the characteristics become parallel correspond to the
velocities of the solitary waves which emerge from doing the initial value
problem.

Exercise 2e.
By setting A — 2¢A, solve the corrected Whitham equations

A,— A
w2~k2=1-3yA262+82—£—A—-’5, k4o, =0, (wA?),+(kA?), =0

iteratively by setting @ = wo+ 8w, + £2w,, k = ko+ eK. Show that wq. ko should
be constant (otherwise shocks occur), wi=ka+ 1, w, = ko K/w,, and both A?
and K are functions of £ =x — (ko/wo)t and 7= et. Introducing K = ¢, gives

_wg 2 Aﬁf) 3')/ 2 2 " 2
=—{-K*+=%)+— =
¢, > ( K A ZwOA , (A%, +wg(A%), =0,

which are the components of NLS for a = Ae™.

2f. Other canonical equations. There are many other equations of impor-
tance in physics which have the soliton property. The list of references contains
many review articles, special issues and conference proceedings and the reader
is invited to peruse this volume in search of his favorite equation. Neverthe-
less, there are two more equations which deserve spectal mention because they
turn up so often.
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One is the sine-Gordon equation. It can be found in nonlinear optics where
it models the propagation of pulses in resonant media; in condensed matter
physics and magnetization where it is used to model charge density waves in
periodic pinning potentials and spin waves in liquid helium 3; in superconduc-
tivity where it describes propagation in a Josephson transmission line; in
statistical mechanics, where it arises in the description of the critical region of
Ising-like models. The reason for its ubiquity is that so many of these systems
share an equivalence to a dynamical system which is derivable from a Lagran-
gian with a kinetic energy proportional to 3f ¢?dx and a potential energy
arising from two sources. The first source of potential energy is an elastic force
which, in the continuum limit, may be mocdelled by

% cz_[ &2 dx;

the second source of potential is due to the influence of some background
lattice structure and often the best model of this potential is

wﬁj’ (1—cos ¢) dx.

It is not hard to see that the Euler equation arising from this Lagrangian is
¢y~ +wisind =0. (2.96)

For a discussion and a list of the many contexts in which (2.96) is found, I refer
you to references [68], [69], [19], [71].
The second equation of note is not a single equation but a set of equations
describing the resonant interaction of three waves. This set may be written [53]
Q?Tfﬂ,. VA, = 6 ATAY 2.97)
for (j, k, I) cycled over (1, 2, 3). Here A,(x, t) is the slowly varying envelope of
a weakly nonlinear wave train with underlying carrier wave exp i(kx —ejt),
o; = o(k;); ¢; is the linear group velocity Vew;. The left-hand side occurs for the
very same reason that, at order £ (where € is the bandwidth of waves about k),
the envelope a(X, T,) of the NLS satisfies ar, + w’ax =0. The right-hand side
arises from the quadratic nonlinear terms X, which in a weakly nonlinear
system represent the strongest nonlinearity, which aliow the resonance

k,+k,+k;=0, w(ky)+ ok, + o(ks)=0. (2.98)

In the wave-particle picture, the resonance relation (2.98) represents the
conservation of momentum and energy in a three-particle collision.
Considering its fundamental structure, it is not too surprising that equation
(2.97) is of great importance in areas of physics where wave processes domi-
nate. It describes, in essence, how energy is redistributed throughout the
spectrum by nonlinear resonant interactions. It arises in plasma waves, in
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atmospheric waves and in ocean waves. (Sometimes the linear dispersion
relation w(k) does not allow (2.98) to be satisfied for any triad k,, k;, k5. In
these cases, energy redistribution takes place at the next order through a
resonant quartet interaction, for example, surface gravity waves.)

For a beautiful and detailed review of (2.97) and its integrability properties
(it is exactly solvable for certain choices of 8;;), the best source is the article of
Kaup, Riemann and Bers [72]. (See also [74] for its solution.)






CHAPTER 3

Soliton Equation Families and Solution
Methods

3a. Introduction. In this chapter, we follow four themes. In Sections 3b, c we
use the traditional and somewhat pedestrian methods for identifying families of
integrable nonlinear partial differential equations. In Sections 3d, e, f we discussin
some depth the inverse scattering method as used to solve the initial value
problem on —oo<x <o for members of the KdV family. In Section 3g, we
introduce methods for dealing with perturbations and discuss in considerable
detail the problem of a solitary wave travelling in a channel of decreasing
depth. This problem has many nontrivial features and has proved to be a very
difficult nut to crack. Finally in Section 3h, we discuss methods for finding
multisoliton, rational and multiphase periodic solutions to soliton equations.

3b. The Korteweg-deVries equation family. The first goal of this section is
to show how to derive soliton equation families. The second is to show in what
sense each flow is Hamiltonian. The third goal is to introduce some important
asymptotic expansions, the coefficients of which are constants of the motion
and proportional to the Hamiltonians.
In order to derive the equation families, we will use the algorithm:
(1) start with a chosen eigenvalue problem in x in which the coefficients
depend on another variable ¢;
(i) assume a general form for how the eigenfunction will change as the
coeflicients evolve in ¢;
(iti) write down the solvability condition for these two equations and deter-
mine which evolution equations are compatible with this condition.
Let us illustrate the method by identifying the KdV family. As we have
discussed in Chapter 1, the appropriate eigenvalue problem is the Schrédinger
equation

U T(A+q(x, tHo =0, (3.1)
which can also be written as a first order system

Vix + i{vl - CI(X, t)DZr

(3.2)
Vo — iU, = -1,  U=v, A=

We write the t dependence of v as

1, =AA;G, G ... - B(A;q,qs .. 0, (3.3)

Dependence on higher derivatives in v is incorporated since A and B depend
on A. Cross-differentiate (3.1) and (3.3), and find on setting the coeflicients of v

61
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and v, to zero that

A =3B_+const. (3.4
and
q. = —3MB —2ANB, (3.5)
where
M=D?*+44qD+2q,, N=D=-:;. (3.6)

Now we come to the second half of part (iii) in the algorithm. Recall that the
goal is to find functions B(A; g, g, gus - - - ) Such that the solvability condition
of (3.1) and (3.3), namely (3.5), is an evolution equation in the form

a:=a4(q 4y Gews - - - )-
A particularly simple class of such functions B are the polynomials
B=Bg\"+---+B, (3.7)

because, from (3.5), By, =0 and, by comparing successive powers of A, each
By, is given explicitly (up to a constant) in terms of its next lowest neighbor
B,.. Without loss of generality, we take B,=—1 and find

NB, ,,= —iMB,, k=0,1,...,n—-1. (3.8)
Then, from the coefficient of A°,
4 = —%mn = 2l\]Bn+1 (3-9)
where we define B, ,; by
NB, ., = —iMB,. (3.10)
We can write
M=—-4NIL, (3.11)
where
L= 1 D*—q +—1~ Ix dxq, (3.12)
4 2J).

is nonlocal.
Let us calculate a few. We note that B, = LB, +const.; for the moment we
ignore the constant. Then

B] = LBO = %q:

) . (3.13)
B, =3Lq = —§(q + 3¢,
B3 =3L%q = 35(qx + 52+ 1044, +104°),

where we have assumed q and all its derivatives are zero at the point we call
x =00, The equations are respectively
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qtl = qx’ (3. 14)
a,= — G +39%), (3.15)
G, = 15(Geeex + 592+ 1044, + 104°),, (3.16)

where we have labeled the (2n+ th flow with linear dispersion w(k)=
—2(k/2)***t, n=0, 1, 2,... with the time coordinate 1,,.;. The constant
in B,, k <n, merely adds a linear combination of the kth flow to the nth flow
Setting all the constants to zero gives what we term the pure family. The
constant in (3.4) is a different matter. Its choice allows us to normalize the
eigenfunction v(x, t, ) in a convenient manner. This we do in Section 3c.

Each flow has a Hamiltonian structure. 1 next want to introduce a most
important result, namely that each flow in the family has Hamiltonian form. It
will be proved in Section 3f that one can write

8I12n+1
8q

as the variational derivative of a functional of g. The latter is defined as

i (—i)n Bﬁ(q("))
o dx aq™ ’

2B, =L"g= (3.17)

that is,
1

e—>0 £

where q™ = D"g, D = d/dx and

imHTq+87)]“HI¢1]=r gl'qu, (3.18)

8q

H[q]=I H(G, 4 G - - -) dx. (3.19)
For example,
17 17~
H1=§j q° dx, H3=§J (4224 dx,

and their variational derivatives are respectively q, —3(q. +3q%). Thus the
n=0 flow corresponding to a pure translation of the initial profile may be
written as

o 8H,
= = — H 3'2
W == 5 (3.20)
the KdV flow, n =1, may be written
_ 9 8Hj
G, = ox 6q (3.21)
and the (2n + 1)th flow of the family
o SH. H, .
. 8 2n+1 — N8 2n+1 . (3'22)

ez = 5 8q 8q
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Alternatively, using (3.11), we have

1 8H2n—1)
{188 |

qtz.“.] 4 sq (3 23)
since 8H,,.,1/6q=2B,,,=2LB, and 2NLB, = —iMB, = —iM(8H,,_./8q).
Notice that each flow has the form

q.=JVH, (3.24)

where J is a skew-symmetric operator, V is a gradient and H is a Hamiltonian
functional.

The remarkable fact is that every one of the functionals H,,, .4, n=0,1,...,
each of which generates a flow, is a constant of the motion for every other flow
and they commute with each other under the natural Poisson bracket (Gardner

[13])
“ 8G o 8F
{F,G}= J._w g o 55 dx. (3.25)

This bracket is natural in that if we think of g as evolving under the £, flow,
then the rate of change of I[q], a functional of g, i.e,

figl= [ 76,40 4un-..) ds

is given by

dI
dty .y

={Hp +1, I}. (3.26)

‘What all this means is that g can be considered a function of an infinite number
of independent variables X, tx.1, k=0,1,..., and (8/8tz;,1)(8q/9121 +1) =
(9/9t5.41)(8g/0t5;.1). The notion that solutions of soliton equations are functions
of infinitely many variables is very important. As a consequence of the
commutability property, if one begins with g(x, 0) and allows q to flow under
(KdV),, 4, for a time t,;,, and then under (KdV)y 41 for ty.+4, one obtains the
same result as would have been obtained had one allowed the evolutions to
occur in the opposite order.

Observe that each flow can be given two Hamiltonian structures. We may
derive q,, . from the Hamiltonian functional H,,., using the Poisson operator
N, or from H,,_, using M. This dual structure is present in all integrable
systems and it allows one to form a ladder process for identifying all the
integrable flows in the family in exactly the same manner as we have already
done and as (3.10) suggests. Given the two independent symplectic structures
M, N and the Hamiltonian H, which generates translation given by NH,; then
the next flow is —3MH, (KdV) which is written NH;; we continue, —3MH, is
the next flow and so on.

I will now show how these functionals are obtained but delay till Section 3f
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the proof that they are constants of the motion. Let me remark before doing
this that if we are dealing with flows under periodic boundary conditions in x,
then the integral in (3.25) is taken over the period.

An asymptotic expansion for v(x, {) as { — . The algorithm for constructing
the constants of motion is as follows. Look for an asymptotic expansion as

{— for the eigenfunction v(x, t; {) of (3.1) by setting v = e***® whence
—2i®, = q+d,, +D2 (3.27)
Solve iteratively for ®,,
P, = —
T (2 é)
and find R, =—q and the recursion relation
n—1
Rn+l = _Rnx - Z RkRn—k) nzl. (3-28)
k=1

The first five members of the list are R;=—q, R, =¢q,, R3=—q.,,—q>, Ry=
Qe Y466, Rs=—(G +3q), +q2—2q°. In particular, for reasons given in
Sections 3e, f, we will be interested in the quantities

ve 1 _ili_g qu(y) dy, (3.292a)
and
lim (vz—l—vl) o — i 1 — I R, dx, (3.29b)
xaoo 2if i) 1.

as the former tells us how to find q(x) from v{x, £)e ™" and the latter turns out
to be a constant of the motion (constant with respect to all times t,,,.,). Recall
that v, =v and vy =—v, +ifv from (3.2). As an exercise I will also ask you to
relate this result to that obtained using the Miura—Gardner transform (Section
1d). We will show that

4i e
Hjpiq =i LD Ry 43 dx, n=0,1,2,.... (3.30)
Observe that R, is not a member of this family and that {7, R,,dx=0,
n=1,.... Indeed the functional —3H ,=§>.qdx has a zero Poisson bracket

with any other functional (put F=H_, in (3.25)); it is called a Casimir
functional.

Exercises 3b.

1. Using the definition (3.25), show that this Poisson bracket satisfies the
Jacobi identity {{F, G}, H}+{{H, F}, G}+{{G, H}, F}=0.

2. Recall that in (1.18) we defined w+3/e?=(6i/e)v /v and found
U t(g+1/4eHv=0. Identify ¢ with —1/2¢, and show that w=
-12it (v /v)— i) = —12i{D,. Therefore the conserved densities of the KdV
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equation introduced in Chapter 1 are {~, R, dx and are proportional to the
Hamiltonians. The members of the infinite KAV family share the same con-
served quantities.
3. At first sight, this exercise may not look meaningful. Take my word for it,

it is! We shall meet the ideas again in Chapter 4. Let

62

a(x, ts,... ) =2 —In7(x, ts, ts,...)
0x

and show up to O(1/¢%) that

1 1 1
ed):exp (ln 'T(x_i, t3_"'é—iz3-, ts__S-i_g—S-’ . .)—'ln ’T(x, t3, ts, .o .)),
whence v is asymptotic to
T()C‘“‘llié, 3~ 1/3i€33 ... )

’U(x t)"' ei§x+i§3t3+i§515
?
(% 83, ..)

Hint: you will need to write

X 1 x 12
J' Ridx as —§I (qxx+3q2)—I =Gy

oo 3
X P a
=2—InTt
L Lq‘3 oty nr

4. Show that by using (3.1), (3.3) with A=1B_, B=—A+13q, is

and then use the fact that

Uy = — Uy — 30 — 30:0-
5. Do the following formal calculations. Let
L=D+a,D '+a,D7*+---,

where D=9/ox and D! is the formal integral operator {*dx. Define B, =
(L"), by which notation we mean the differential operator part of L". For
example (L), =D, (L%, =D?*+2a,, (L%, =D?*+3a,D+3Da, +3a,. Consider
the hierarchy of equations

v, = B,v, n=2,3,4,5,....
Their solvability condition is
(B,)s,,— (Bp)x, +[B,, B,,]1=0. (A)
Case (i). Suppose the coefficients a,, a, are independent of x, in which case

one can set v — e¢™2v and replace v,,= B,v by Av = B,v. Show that (A) then
gives a, = —3a,,, and

(Zal)x3 - %(zal)(zal)x - %(Zal)xxx = 0~
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Note that if we set x; = —t, v,,= Bsv is precisely the form of v, = Bv in the last
exercise.
Case (ii). Let a,, a, be independent of x;. Then

1 3

* 1
;= _5 Aix +§ J' alx2+c, _i aIXszvE Ayxxxx _6(a1a1x)x =0.

Let a, =3(q—c?/2) and find

xrx, Cqux = %qxxxx - Z(QQx)x’

the Boussinesq equation (2.26).
Case (iii). Finally, let a,, a, depend on x, x, and x,. Now you will find

1 3 _
(2a1x3—§a1xxx —6a,a;,), — 50150, = 0

which, after making the appropriate transformations, is the KP equation
(2.27).

Remark 1. The system v, =B,v, n=2,3,.. ., gives rise to the KP hierarchy
of equations. The interested reader should consult reference [39] for a discus-
sion of the algebraic structure and the 7-function for the family.

Remark 2. For case (i), the KdV equation, the initial-boundary value
probiem is solved by focusing one’s attention on the eigenvalue problem
Av = B,v and using the equation v,,= B;v to calculate the x; dependence of
the scattering data. For case (il), the Boussinesq equation, the eigenvalue
problem is Av = Bjv, a third order system. The x, evolution of its scattering
data is found from v,, = B,v. For case (iil), things are not that simple. There is
no eigenvalue problem at all! One must solve the two-dimensional scattering
problem v, = v, +q(x, x5; Xx3)v. The reader is referred to [124] which is the
proceedings of the 1983 meeting in Kiev. In particular, he should note the
articles and references of Ablowitz, Fokas and Zakharov, Manakov.

3c. The AKNS hierarchy and its properties [23]. This time we start out
with a different eigenvalue problem, a generalization of the one introduced by
Zakharov and Shabat [21] for studying the NLS equation,

V. =PV= (r(—x";t) q(f{’ t))v, V= (:’;) (3.31)

Let us determine the system of evolution equatiocns which can be solved exactly

via (3.31). If g and r evolve with some parameter t, then let

h e
V,=QV, = ( ), 3.32
=av, o=(; ° (3.32)
and the solvability condition for (3.31) and (3.32) is

P,—Q,+[P,Q]=0, (3.33)
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where [P, Q] is the matrix commutator PQ— QP. In component form, (3.33) is
h.=df—re, e +2ile=q,—2hq, [ —2ilf=r+2hr (3.34)

We look for polynomial solutions for Q of degree n (we will therefore
designate this Q as Q"™ and its corresponding time variable as t,). As an aid
to the computations it is convenient to introduce the matrices

N 0) _ (0 1) _ (0 0)
H"(o ~1f Bl o) F7L o (3:35)
which obey the commutation relations for the algebra sl(2)

[H, E]=2E, [H,F]=-2F, [E F]=H. (3.36)

For the moment, the algebra is just a computational convenience; later on in
Chapter 5 we will show that it is central to the whole theory.
‘We look for solutions to (3.33) in the form

O(n) — *iHC" + Ql£"_1 44 Qm (337)

where P= QW =—iH{+gE+rF, Q. = hH+eE+fF. At {" %", the compo-
nents e,, fi, of E and F in Q, are determined; at ", the diagonal component
h, is found. The first few are

Qo - _iH
_{0 4)
Ql - (T 0 ’
Z qr i G«
2T 3
02 = . - H
mUS
2 [ 2 qr
—Har,—ra) —Hau— 2q2r))
= 4 x x )
Qs (—%(ru—zqﬁ) 3(qr, —ra,) (3.38)
The equation
P~ Q.+ [((r) g), o,,] =0 (3.39)

is then the evolution equation for q and r. The flows corresponding to
n=90,1,2,3 are respectively

G,=—2iq,  r,=2ir (3.40a)
with

Q9 =—iH; (3.40b)
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4, = Gy, r, =1 (3413)

with
QW =—iH{ +gE +1F; (3.41b)
qlz 25 (qxx - 2q2r)5 rtz = —% (rxx - 2qr2) (3'42a)

with
Q(2)=—ng2+g(qE+rF)—l—g—rH+éq,E—% r.F; (3.42b)
qt3 = ~—‘ll(qxxx - 6qux)s h,~— }t(rxxx - 661”3:) (3.433)

with

QP =—iHg3+ (AgE + rF)+ {(—%!H+é qu"“;‘ er)

—3(qr, — ra)H —%(q.. —2q°1)E— (. — 2qr)F. (3.43b)

The zeroth (t;) flow corresponds to a scaling of the coordinates in which all
products gr are constant; the next (¢;) flow is translation; the second (t,), with
r=xq*, a consistent approximation, is NLS; the third (¢;) flow is, with r = +q,
again a consistent approximation, the MKdV equation. Notice that the strings
Q® for all flows £, k <n are congruent in the sense that Q**V = Q"+ Q,, ,,
k=0,1,...,(n—1).

The following results, which are not easy to prove in the present formalism,
hold.

(i) All the equations P, = Q% +[Q", P] commute; i.e. P,, =P, .

(i) All these equations are Hamiltonian; there are certain functionals {F, }5,
such that

SF, SF,
o’ r, = o ° (3.44)
e.g. for n=2, F,= —(i/2) §=.(q.r + q*r?) dx.

(iii) The F, are integrals of certain polynomials F, in g, r and their x
derivatives and there are relations of the form

3F, _ 3G,y
ai; ax

q..,

s n=0,12,..., (3.45)

called conservation laws. Here F, is called a conserved density of the jth flow
and G,; is called the flux. The E,’s, as in the case of the KdV family are usually
found from asymptotic expansions in { of certain functionals. In Chapter 5, I
will give you formulae, local in g, r and their derivatives, for the G,;.

At this point I want 10 make several remarks and observations. First, we will
derive all these results from a single starting point in Chapter 5. Second,
observe that Hamilton’s equations have the more familiar form Z'=JVH
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where Z =(% and J is (_] }). In these systems g and r are conjugate variables
and the two-form which is preserved is |~. &r A8qdx, where by the wedge
product 8rn8g 1 mean &;rd,9—8,r8,q where 8; and &, are independent
variations. Third, in this formulation, the independent variable x has been
given a special role; for example, all the coefficients in Q, are x derivatives.
Note, however, that in Q5 the coeflicient of E could be written as a i,
derivative (i/2)q,,. Also, the conservation laws are all written in the form

]
9 (conserved density) = — (flux).
a%; ox

There are in fact many more relations which take the form

_8_ Ey= i Ey.

ay; ot
The reader might say at this stage; “x is special because of the fact that the
range of integration in defining F,, is all x, whereas all the time evolutions are
local in t” True, but remember that 8F,/8q is really only a symbol for
Yo (—d/dx) (6F/aq™) where g is 9g/ax", and all these terms are purely local.
Fourth, and this remark will lead us towards a new way of looking at things, we
must have that

Q- QP+[Q™, Q=0 (3.46)
as the compatibility condition for all equations
V, =Q%®V. (3.47)

Now, recall that QY is a polynomial in ¢ of degree j. Let us divide (3.46) by ¢’
and take the limit of the resulting equation as j — oo. If we call

. QY & Q
O=lim—=) =, 3.48)
e L o & (
then (3.46) becomes (lim;_., (Q%/¢")=0; think of ¢ as being large),
Q. =[Q%, Ql (3.49)

Now the equation for all the flows has a much more algebraic structure and is
in Lax form (although here Q is not an operator in d/dx but rather a Laurent
series in ). It admits the solution

Q=vQ,v™? (3.50)

where Q, is a fixed arbitrary matrix, independent of # and V satisfies (3.47).
Often we will take the normalization of V to be such that O, = —iH; in other
circumstances it might be written as Q(0), the value of Q at some fixed values
of x and #. (Recall, in all we do, x and ¢, are interchangeable.)

Exercises 3c.
1. By direct computation, show that q,,,=q,.,..
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2. Look for a solution for Q in the form Q" =(1/¢)Q_,. Can you obtain
from this the sine-Gordon equation

U, =sinu ?

(Hint: take —q =r = u,/2; what happens if you take q =r = u/2?)

3. Notice that when one makes restrictions like r = g, they are only compati-
ble with certain of the flows. For example, if r=tq initially, then the even
flows (i.e. t,,,) will destroy this relation. However all the odd flows (i.e., t3,,41)
will preserve it. The opposite happens for r = +q*.

4. Find that linear combination of the pure flows QV’, Q® and Q“ " which
is appropriate for the evolution equations

a) q =7q. +Maex +64°4,),

b) thy =SIN U+ Uy +3UTU,..

By this, I mean, find Q=aQ®+BQ®+yQ" such that the integrability
condition of V,=QV and (3.31) with r = —¢q is (a) and (b).

5. By allowing the parameter { a time dependence ¢ =Y, a,{’, one can
include x dependent coefficients in the equations. Show that by taking Q=
0OP—ixaH (the term iZ, here taken to be ia, a real, is added to the LHS of
the first equation in (3.34)), the corresponding evolution equations are

G =5’ (g —2q°1) — 2iaxq, r,= —5’ (r.. —2gr?) + 2iaxr.
This allows us to study the effects of density gradients in contexts where the
NLS equation obtains. The effect of these influences is to make the discrete
spectrum (which was introduced in Chapter 1 and which will receive more
attention in the following section), which up to now has always been a constant
of the motion, move in a prescribed way. (See [75].)
6. By starting from the eigenvalue problem [76]

B¢ p q 3
Ve=l+p* Bt r V. Lg=0,
+q* +r* iBsl =t

show how to choose V, such that the resulting equations are the three wave
interaction equations in one space dimension, p,+cp, =d,q*r* plus two
other equations obtained by cyclic permutation of p, q and r.

7. For the general (n X n) systems, you might want to consult references [76]
and [77].

8. By taking the eigenvalue problem [78], [79]

—ir?
V, = ( ¢ _‘:‘i)v
&r
show how to choose V, so as to obtain the derivative nonlinear Schrodinger
equation (DNLS) and the massive Thirring model.
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Remark. We will see that the set of equations which arise from this eigen-
value problem are sisters under the skin to the AKNS hierarchy. See [38].

3d. The direct transform for the Schridinger equation, or scattering on the
infinite line {12}, [8C]. For reasons given in Chapter 1, it seems natural to
associate the Schrodinger equation

U H+qlx, ))v=0 (3.51)

with solutions of the KdV equation. In Section 3b we found that if g(x, 1)
evolves in the parameter t according to

G +64qq, + g, =0, (3.52)
then B=-4{%+2q, A=q,+C, C a free constant, and
v, =(q, + C)v + (4%~ 29)v,. (3.53)

(See (3.15), and its corresponding B = B®. Note that we have written t; =4t.)
“So what?” you might ask. “How does this help?” The transformation from
q(x, t) to v(x, t; £} does not lead to an equation for v(x, t; ) which is any easier
to solve. It does not, for example, linearize the KdV equation in the way a
similar transformation does for Burgers’ equation (Exercise 1d). Fortunately,
the group (Gardner, Greene, Kruskal, Miura) who discovered the equation
were familiar with guantum physics, and once Schrodinger’s equation popped
up it seemed natural to compute its scattering data. Furthermore, as I have told
you in Chapter 1, it turns out that the map from the potential q(x, t) to the
scattering data (or a subset thereof) is precisely the right transformation to
make in order to render the infinite dimensional, coupled mechanical system
(3.52) separable and solvable.

Scattering theory, the main ideas. The word scattering connotes time, a
“before” and an “after” and brings to mind a situation in which a given
entering pulse or wave is (in one dimension) partially transmitted and partially
reflected by some inhomogeneity represented by the potential q(x, t). The first
point to make is that the time connoted by the word scattering and the parameter
t (time) in the KAV equation have nothing to do with each other. We will call the
former variable 7 and for the moment keep the latter time fixed. Consider, for
example, the Scott model of a continuum of pendula hanging from a torsion
wire, and imagine either that gravity disappears or the lengths of the pendula
get very long as x — 4o, Then (2.28) can be written

U — iy + 02u=0, (3.54)

where the coefficients ¢* and w? are functions of x with the property that

c?— ¢, 02— 0 as x — +oo. For simplicity let us take ¢*=1 for all x. Equation
(3.54) would represent the propagation of waves in a string which is encased in
an elastic medium over a portion of its length. In any event, because w? is
independent of 7, one can seek solutions to (3.54) in the form u(x,7)=
17 v(x, £)e " di, whence v(x, £) satisfies (3.51) with —wZ(x) = q(x, t). Imagine
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that the t in q(x, f) represents some parameter by which it, i.e. q(x, t), can be
changed continuously. But again I stress that as far as scattering theory is
concerned, it is considered a constant.

Since q(x) goes to zero at x — +oo, the asymptotic behavior in x of v(x, {) is
given by a linear combination of e*** with coefficients that can depend on ¢
The e*** solutions will represent in u(x, 7) a function of x =7 and therefore a
wave moving to the left (right). Consequently, if a Dirac delta function pulse is
sent in towards the potential from x =+, part of it will refiect and thus the
solution v(x, {) at x =+cc will look like

vx, ) = e+ R(De™, (3.55)

where R({) is called the reflection coefficient, and part of it will be transmitted
and so at x = —o0, v(x, {) will look like

v_alx, §) = T(D)e™, (3.56)

where T(l) is called the transmission coefficient. It follows both from the
theory of ordinary differential equations (we will say why shortly) and from
intuitive considerations that

IR +|T>=1. (3.57)

Now in the sine-Gordon model we have chosen a q(x)=—w? which is always
negative. However, in the context of quantum physics, the potential —g(x) in
which the electron travels can be negative at some locations, and solutions of
(3.51) which are other than wavelike are also possible. These are the so-called
bound states and they arise from values of the energy A = E = ¢? which are
negative whence { is purely imaginary. Whereas the wavelike solutions are
admissible for all real values of { (all positive E), there are only a discrete and
finite number of eigenvalues {, (= i, ) for which the corresponding eigenfunc-
tion is square integrable over (—, ). One can see this as follows. Imagine a
solution which, as x — —, looks like v_.(x, {) = e which decays exponen-
tially there for { =im, n > 0. In general after interaction with the potential, one
expects this solution to have both components ¢ and e as x — +o,
Whereas the latter behaviour is admissible (¢ ™, n>0) the former is clearly
not because the corresponding solution would not be square integrable. There-
fore ¢ has to be very special in order that the asymptotic behavior of v(x, &)
as x — + only contain the e'** term.

It is for this reason that it is convenient to normalize the solutions of (3.51)
that we study as follows. For { real, we define ¢(x, £), ¥(x, {) to be those
solutions with asymptotic behaviors

d)(x7 g) -~ e—i;x’ X —> =% (3.583)
and
U(x, )~e®,  x—+owm, (3.58b)

We define two pairs of linearly independent solutions ¢, ¢ and ¢, ¥; ¢ has
asymptotic behavior e~ as x — — and ¢~ e~ as x — +=. For g(x) real, the
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functions (x, &) = $(x, —0) = ¢*(x, ) and P(x, )= yY(x, ) =¢*(x,{) for ¢
real. The asterisk denotes the complex conjugate. These two sets of linearly
independent solutions are related,

& (x, )= a(QO(x, —0)+b(Qy(x, O), (3.59)

where from the symmetry conditions expressed above it is easy to show that
a*() = a(—¢) and b*(¢) = b(—¢). Also, the second order equation (3.51) has no
first order term (if expressed as a system (3.2), the coefficient matrix is
trace-free) and therefore the Wronskians of (¢, ¢) and (¥, ) are constants in
x. Since W(¢, ¢) = b, — b = 2iL and W(i, ¢) = 2iL, we must have (carry out

this calculation!)
aa*-bb*=1. (3.60)

Now compare (3.59) and (3.55), (3.56). In order to get “one” in front of e *
as x — +oo, divide (3.59) by a({). Then it is clear that
1 b({)
T) =——, R =—2, 3.61
O=25 RO=15 (3.61)
and that (3.60) is simply (3.57).
Remark. The “linear” limit. It is worth observing at this time how the
reflection coefficient R(¢) is related to the ordinary Fourier transform

ad)=5- [ ate™ dx
2@ 1.,

of q(x). To see this, use the formulation (3.2), to write the pair of integral
equations for = —, +ily and ¢ =1, where Y(x, {) is a solution of (3.1)
with asymptotic behavior (3.58b),

Ye' = J q(y)gpe™ dy,

Yoo F=1— J' e dy.

Now, solve these equations iteratively, successively obtaining terms which
contain higher and higher powers of q. In fact, it is just these expansions which
are used to prove the assertions (3.64) below. In this calculation, however, we
think of g as being small and only keep terms up to linear in q. We find, then,
that y,e™ is approximated by % q(y)e*® dy. But from the inverse of the
relation (3.59),

P(x, £) = a(Q)d(x, =) — b(—={)d(x, {), (3.62)
we note that e’ = (-, +ily)e'*™ tends to —2ilb(—&) as x — —oo. Thus,

~2ip(-0)= | ke ay
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and therefore

= oft)

Also, in this limit a =1 and so the scattering data is the Fourier transform.

I want to emphasize that this calculation is just a paradigm, a useful way in
which to see that the inverse scattering transform is a nonlinear analogue of the
Fourier transforms. In reality, one has to be very careful about what one means
by the “small g™ limit. There are many potentials which are small everywhere
in x but which, nevertheless, have bound states. For example, in Exercise
3d(3), the amplitude O can be as small as we like; yet there is always one
bound state. In this sense, the imit a — 1 for all ¢, Im >0, is nonuniform.

The scattering data and its properties. So far we have dealt only with solutions
where { is real. It turns out that if a real q(x) obeys the condition

J.m (1+x?) |q(x)| dx <es, (3.63)

then the following results hold.

@) o, Oe™, PYlx, He™ and a(l) (which is defined by
(1/2i0) W(, 1)) are analytic functions of ¢ for Im ¢ >0. (3.64a)

1) &(x, Oe™, Y(x, e ™ and their derivatives with respect to ¢
exist and are continuous everywhere in Im { =0 including { = 0. (3.64b)

The reader should consult Deift and Trubowitz [80] for details. The mathemat-
ical problem in inverse scattering is to characterize scattering data that corres-
pond to a specified class of potentials. Originally Faddeev had studied the class
q(x) for which (., (1+{x{) [q(x)| dx <, but Deift and Trubowitz pointed out
that in order to control the ¢ derivative of ¢(x, {)e ™ at £ =0, the slightly
stronger condition (3.63) is necessary.

Next, consider (3.29) with v = . Recall that ¢, = -y, + il and, using (3.62),
we see that the quantity (¢+(1/2i0)( —i&g))e = tends to a(f) as x — —oo,
Hence (3.29) gives us that

Ina(Q)~—y, ! r R, dx. (3.65)

T (2i0)"
In writing (3.65), we have assumed, of course, that all the integrals on the
right-hand side still exist, a much stronger condition than (3.63) imposes. If we
only have (3.63), then all we can infer is that a({)—1 and ¢ -, Im {=0.
For the moment, however, this is all we need. We know that a({) is analytic for
Im £ >0, exists when Im ¢ =0 and tends to unity as £ — o, Im £ Z 0, Therefore,
it can only have a finite number, N, of zeros in Im £ >0 as otherwise the zeros
of a(f) would have a finite accumulation point and then, by an analytic
continuation argument, a({) would be identically zero. (If the accumulation
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point is at £ =0, a more detailed argument is required.) From (3.59), we
observe that a({) is proportional to the Wronskian of the solutions ¢(x, {),

(x. &)
W, ) 1

a()= i a2y (D, — ),
and, therefore, at each zero ¢, k=1,..., N, of a(d),
(b(x, gk) = bk‘l‘(x, Ck): k = 19 DO ] N. (3~66)

Observe, also, that a{{) may have a pole at {=0. In fact, this is the rule. The
exceptions occur when |R(0)] <1. The reader might think of this property when
he is working out exercises (ii), (i), (iv), (v) at the end of the section.

The set

b
a(?)

is called the scattering data (aj, is 9a/d Ic..)- From it a({) can be constructed as
follows. The function

s={r@)=22 &, byapi'.} (3.67)

N .
f@ =TI aw

The

is analytic for Im {>0, tends to 1 at { =, Im {20 and hence by Cauchy’s
theorem

mf@=5- [ 28

T

_1 (" Inf@®
S _Lo E+e d§, Im{>0.

Letting £ — —¢ in the second equation, noting that for real £, f(&¢) f(—&) = a(¢)
a(—¢) =|a(&)|?, and adding the two equations, we obtain

- 1 [ Im(1-|RP)
nal)= Z In g+mk 27 L ¢ %
from which it trivially follows that
¢ ("In(1-|RP)
a0 Z ] (3.68)

(It is easily seen that the possible simple pole at { =0 in a({) does not affect
the result.) Note that taking the asymptotic expansion as ¢ — o of both sides of
(3.68) gives

2n+2 N

© _ot 1 2 * p2n _Ipl2
|| Readi=3— T az-2 [ e ma-ire de
(3.69)

4i
2n—1 =(_2;')E,171
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Equations (3.69) are the trace formulae giving the Hamiltonian functionals
H,, 1, n=1,2,... (the formula holds for n=0, but H_; is not a legitimate
Hamiltonian)® as functions of the eigenvalues {n, }}_; and the modulus of the
reflection coefficient |R(£)|, & real and positive. They therefore express the
constants of the motion in the old variables (q, q,, 4., . . .) as functions of the
constants of the motion in the new variables (the scattering data) and in
particular tell us how the Hamiltonians map under the transformation from
q(x, t) to S(t). The first few are worth writing down explicitly:

;oC N oo
qdx=aY m+2 [ In (1—|RP) dé, (3.708)
J—oc 1 (4]
[~ 2 16 o 3 8 = 2 2
@ de=—Xmi—— | £InQ-|RP) d& (3.70b)
-, 1
oo N o0
@2-247 dx =5 3 mi—22 L £ln(-IRPdE (3700
J_o 1 Ko

It is worth checking these formulae for the case when g(x) is a one-soliton,
reflectionless potential. By reflectionless, we mean that the reflection coefficient
R(¢) 1s identically zero. Then the nontrivial scattering data are simply the bound
states {, =im, b Y. In particular, if N=1, q(x)=2nsech® n(x—Xx) where
1, =1, by = €™, Note that for N> 1 the energy of the N-soliton state is simply
the sum of the energies of the individual soliton components. This is not
unexpected since the energy is conserved and, in the long time limit, the
N-soliton state will asymptotically approach the linear sum of N separate
solitons (see (3.108)). It is also worth remarking that, from (3.70a), the mass
content of the solitons Y7 4m,. is always greater than the actual mass contained
by the solution q(x) (§~. qdx) because 0 <|R|*< 1. Therefore the contribution
of the continuous spectrum to the mass content is always negative. This result
has important ramifications when we consider perturbations on the KdV
equation. It is now a good time to work out several examples in detail.

Exercises 3d.

1. Take (2) v, =u(x, t)v and (b) v, = (u*+u,)v. Note that the integrability
condition is Burgers’ equation (¢) u, = 2uu, + u,,. But, by differentiating (a), we
see (b) is v, = v,,, the heat equation. Hence (c) can be solved directly by using
the map (a).

2. Take q(x)=Qy8(x) and show that a({)=(Qy+2i0)/2if, R({)=
—Quf/(Qu+2i{). There is one bound state at { =iQf2. Also R(0)=—1. In fact,
for all potentials except the reflectionless ones (where R(¢)=0) R(0)=-1.
Verify that (3.60) holds. Calculate ¢(x, £), P(x, £) and find b,.

5 H_, gives rise to the flow, g, =0,
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3. Take q(x)=Q, 0<x<L and zero otherwise. Show

- 2
a(§)=em‘{cos &+ QL—l(ﬁ—-t—Q—)sin v+ OL},
20+ Q
) (3.71)
b)) = e_“L——IQ———sin VEZ+QL.
20V +Q

Why is a({) analytic for Im  >0? Note that as {— 0, R({) — —1.

To find the zeros of a(l) set (=ivQcos® and find a(d)=
sin (26 + a sin 6)/sin 20 where « =+ Q L. Discuss the zeros of a({) as a function
of a by looking for the 0 <@ <ar/2 intersections of the graphs y = sin & and
y=nw—26,n=1,2,....

Remark. Note that in this case a({), b(¢)/a(¢) and all the eigenfunctions
& (x, £), Y(x, L) are analytic everywhere except at { =0, c. This property carries
over for all q(x) on compact support.

4. Take q(x)=2m’sech®? n(x—X) and show that by the transformation
tanh n(x—x)=t, (3.51) can be converted into an associated Legendre equa-
tion. Show R(£€)=0. Find explicitly a(£), the eigenfunctions and eigenvalues
(there is only one ¢;=in) and norming constant b; and show q{x)=
—4i(by/a)my?(x, £y)-

5. Take q(x)= A sech? x and show that (3.51) can be solved in terms of the
hypergeometric function and that the reflection and transmission coefficients
are given in terms of the I' function with arguments depending on ¢ and A. In
particular show that when A =n(n+1), n a positive integer, R(£€)=0 and a
pure n soliton solution arises. Note for A almost equal to n(n+1), R(0)=-1
whereas for A = n(n+1), R(£§)=0. (For details, the reader may consult Lamb’s
book [69].)

3e. The inverse transform. In this section, our main goal is to show how to
reconstruct the potential q(x) from the scattering data S. The end result will be
the celebrated Gel’fand—Levitan [81] equation, although an equation we obtain
along the way will be more useful for obtaining the formulae for the reflection-
less (pure soliton) potentials. We will examine the two-soliton case in detail,
and explain what is meant by the phase shift.
The first and longest part of the analysis is the reconstruction of the
fundamental solution matrix
o= (qb(x, 0 vx C))
$x, ) lx, O

Once @, and in particular its elements, are known, one can find out that it
satisfies the Schrodinger equation and from this pick off the potential g(x). The
most convenient but not the only way of accomplishing the latter step is to
isolate g(x) by looking at the asymptotic expansion for (x)e *** given by
(3.29a). From this

q(x)= 811_)12 —2ig thix W(x, He 1), Im {=0. (3.73)

(3.72)
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A similar analysis to that which leads to (3.29) tells us that ¢(x, )e™,
& (x, —O)e %, P(x, —{)e™ each tends to unity in their half planes (Im {=0) of
analyticity.

What we want to find is ¢(x, e (or P(x, )e ) which we know is
analytic in the upper half plane with asymptotic behavior ¢e’™ — 1 as { — o,
Im ¢ >0. We also know {(x, —Z)e'* is analytic for Im { <0 and on the real
axis, £ = ¢, equation (3.59) specifies the jump between (¢/a)e*™™, which con-
tains only a finite number of poles in Im £ > 0, and s(x, —&)e'* to be the continu-
ous function R(EW(x, £)e**. This is the classic Riemann-Hilbert problem
whose solution is constructed as follows,

Consider, for Im { >0, the integral along the real ¢ axis,

1 r o, e df
2@il. a@®E+y’
We will evaluate I in two ways. First, we will take advantage of the fact that

&(x, &e™ and a(§) are analytic in the upper half plane Im £ >0 and move the
integration contour to the circle |§ = R, R — o, 0<Arg £ <. We find

Im ¢>0. 3.74)

- Z Ve 1

k=1 Lt & 2

The first term in (3.75) arises from the contributions from the zeros of a(¢{),

which are simple, at which points &, ¢, = by (5, means P(x, £.)). We define

Y% by b.(a;)™* where a;=da/d f;k. The second term comes from the integral

along the semicircle at « on which we know that the integrand tends to £1.
Next, we evaluate I by using (3.59) and writing,

1 P(x, —&)e'™ g P(x, £)e™ dL
& 27ri .LQ E+¢ 27ri .Lo © E+¢

(3.75)

(3.76)

From the analytic properties of the integrand in the first integral, we obtain

P(x, £)e™ df
E+L

Now we are finished because (3.75) and (3.77) give us a closed integral equation
for ¥(x, &). It is
“ipx _ Vi€ 1 I Ulx, £)e™ de
x, {)e = - R(§) ———.
V0 kgl {+& 2771 o © E+¢

Note that the set of data we need to solve (3.78) is precisely S = (R(£), £ real,
(& v)Y). In order to accomplish the task of solving (3.78) and of proving
existence and uniqueness of the solution, it is sometimes convenient to make a
Fourier transform of (3.74) and introduce the “time™ variable we called 7 in
Section 3d. We make the ansatz

—(x, €)e“""+1+ ! I R(8) (3.77)

2 2

ICx

(3.78)

Y(x, e =1+ J K(x, s)e*“ds,  Im{Z>0. (3.79)

X
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It is not too difficult to show that such a K(x, s), independent of £, exists [12].
The asymptotic expansion of (3.79) gives

. 1 1
P(x, He =1~ 7 K(x, x)+ O(E)’

and a comparison with (3.73) gives

d
q(x)=2—~ K(x, x). (3.80)
dx
Introduce (3.79) into (3.78), multiply across the equations by e**~™ and
integrate in { from — to o along a line just above the real axis. Then using the

facts that

dte* S =27 8(s— 1),
;oo eic(x—'r) ey N ( )
d =—2qie """ H(r—x),
Jo ; C + gk
;oo ei{(x—-r) i€ )H( )
da¢ =—2mie " "H(t—x
Jor { + g
where H(y) is the Heaviside function, we obtain
K(x, 7)+B(x+'r)+j K(x, s)B(s+7)ds=0, >3, (3.81)
where
= . 1 [~ .
B@=-iY ne®+>- [ R@e* d. (3.82)
k=1 27l

Equation (3.81) is the Gel’fand—Levitan equation. It is a Fredholm equation
from which K(x, 7) is constructed as function of +>x from a knowledge of
B(x+ 7). Then ¢(x) is found from (3.80). It is sometimes worth writing (3.82)
in the more compact form

Bl=5- | R@e™a (3.83)
C

where C is a contour from & = — to & =+ going over the poles of R(£). This
formula is only valid if R(¢) admits analytic extension to the upper half plane.
The class of reflectionless potentials. The class of reflectionless potentials g(x)
arise when R({) is identically zero and in that case it is much easier to work
with (3.78) directly; e
P(x, e = 1_§ M. (3.84)
1 {+4

Note that from (3.71), if & = in,,

d N
q(x) =27~ X, i . (3.85)
X 1



SOLITON EQUATION FAMILIES AND SOLUTION METHODS 81

Let ¢ = ¢ =in; in (3.84) and obtain a system of N linear equations

N —(n, +n)x
YNe "t O - :
8; +—,————)¢]; =e M, j=1,...,N
kgl ( ’k l(’ﬂk'*"'],‘) «

for ¢4 from which we can calculate Y(x, {)e ™ and q(x) directly. From the
properties of b, and a({), it easy to show that vy, is pure imaginary and we will

write it as
Tic = 2im ™5, (3.86)

The one-soliton solution ¢, =in (each discrete eigenvalue gives rise to one
soliton) is

d‘ewilx =1~ l"] sech 'n(x — f)e“"‘(x“i) ’
E+inm
¢eigx —1- in sech n(x -— g)e—n(x—;c)
E+in
’ 1 s -
a({'l):_i_i—";, bl__e ) ( - )

e ™

U(x, &) =G B

—nx

% L) =by(x, §) = € s,

q(x)=2n2sech? n(x —Xx).

In particular, the parameter b,, the ratio between ¢ and @ at ,, is 2™ and
thus specifies the soliton position. In the next section, we will find how it
depends on time t.

In addition, one can show that for the N-soliton solution, g{x) can be written
as the second x derivative of the logarithm of a function we shall call 7(x) (not
the variable 7 in the Gel'fand-Levitan equation) which may be written

N
T= Z exp {Z piH, + Z Ai,-p,iuj}, (3.88)
#;=0,1 i=1 1si<j=N
where
. — . 2
H =-2n,(x— %), eAﬂ=(1"—ﬁ) (3.89)
i+ 7

and the first sum is taken over all p; =0 or 1. The reader is invited to check
that, for N =2,

T=1+e 2T 4 g 2l o 2yl X ) 2R Ay (3.90)

The two-soliton interaction. Let us for the moment anticipate that if g(x, t)
evolves according to the KdV equation, X, =477t +x* and let us examine the
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two-soliton interaction. Imagine that #;>1, and let us look near x=x,.
Because X,—%; =4(n32—n2)t, the second and the fourth terms in (3.90) are
exponentially small if t - —c0 and thus near X,,

7= 1+ %)

and 2 -
q(x) = 2m; sech™ np(x — %2).

On the other hand, near x =Xx,, the third and fourth terms dominate and
Te= e*Z'rb(x—)_cz)(l_|_e——2'r|1()c-§cl)+1‘x12 .
The corresponding g(x) is
1
q(x) = 2"]1 SeCh2 'nl(x - il har— AIZ)'
2,

Similarly as t — 4+, near x=1X,,
q(x) =27, sech® n,(x — 321)

and near x = X,,

1
q(x) =2m, sech? 'nz(x—fol—z— A12)-
N2

x=472?z+x,

X
= 2
X—4n2t+X2

- Ai
X—4n|t+XI + E;)_l

F1G. 3. The two-soliton interaction.
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Therefore the smaller soliton 7),, which for large negative time lies to the right
of soliton 1;, undergoes a phase shift by an amount (1/2n,)A,;, which is
negative, in its position. The larger soliton n; jumps forward by the positive
amount —A;5/27;.

Finally, the reader should observe from (3.88) that if there are N solitons
N> 1> - >N, then as t sweeps from —o to +oo, the total phase shift
experienced by any soliton is the sum of the pairwise phase shifts.

It is also true, and I will tell you why in Chapter 4, that the phase shift
function

A,=21n 11‘
mhm+mn;

is shared by every equation in the KdV family. Can you see now why this must
be true?

3f. Time evolution of the scattering data and the efiects of small variations
in the potentials. In this section, I first want to show you how to calculate how
the scattering data change in time as the potentials g(x, t,; ;) change according
to any one of the equations (3.9). We will begin with the case when q(x, t)
satisfies (3.52). Next, I want to derive formulae by which infinitesimal changes
in the scattering data resulting from an infinitesimal change 8q in the potential
can be calculated. The infinitesimal change in the potential is arbitrary and
need not follow the direction of any of the special flows (3.9). These formulae
will be important for

(i) establishing a framework for carrying out a perturbation theory in the
case where q(x, t) evolves like g, +6qg, + G = £F(q, G, - . .), 0<e«1;

(ii) proving (3.17) which established the relation between the fluxes L"q

and the variational derivative of H,,_,; and

(iii) writing q and 8q in terms of a ‘“‘squared eigenfunction” basis, the

analogue of the Fourier transform.

Time dependence of scattering data. 1t is simple to calculate the time depen-
dence of the scattering data using (3.53). The first task is to choose C so that
the particular normalization is consistent with the definitions of the eigenfunc-
tions ¢(x, t, £) and (x, t, £). Recall that by definition (3.58), ¢(x, t, {)~ e as
x — —o for all t, and in order that this be so we must choose C = 4ig>. Similarly
for ¢(x, t, £) we must choose C=—4i¢>. Hence

&= (q, +4il>)p +(4 - 2q),, (3.91)
e = (g, — 4+ (47— 2q)s. (3.92)

To find the ¢ derivatives of a(Z, t), b(Z, t) use (3.59) directly or its asymptotic
form as x — +o. Taking the t derivative of the left-hand side of (3.59) gives

(g +4iNag(x, =) + b(x, £)) + (4L —2q)(ayy (x, — ) + by, (x, 0)),
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whereas on the right, we find
a(x, —8)+bp(x, )+ alq. +4i*(x, —{) + al4*— 2q)s(x, —0)
+b(ge — 4i)P(x, O+ b(45” - 2q) (%, ).

Equating these two expressions gives

a,=0, b,=8i’b. (3.93a)
A similar calculation on (3.66) gives
by, = 8ilib, = 8M3b. (3.93b)

Note that (3.93a) and (3.93b) are consistent in the sense that if the potential
q(x, t) were such that b({, t) admitted analytic continuation to ¢ =¢, then
(3.93a) would become (3.93b). Alternatively, substituting the asymptotic form
of d(x, t, &), a(g, e ™ +b(L, t)e™ into (3.91) also gives (3.93a). The key point
to note is that even though the time evolutions of ¢ and ¢ contain the unknown
g(x,t) and its x derivatives, the scattering data involve only the relative
behavior of the eigenfunctions at x ==, and at these points g{(x, t) and its
derivatives are known for all time: they are zero. On the other hand, if one
were solving the periodic problem over 0= x= L, there is no point x at which
one knows q(x, t) for all time, and this fact makes the time evolution of the
new coordmates for that problem much more complicated.

The constancy of the function a({) is central to the theory. First it ensures
that the discrete eigenvalues , =in,, k=1, ..., N are constants of the motion.
Second, from (3.65) and (3.69), we see that the Hamiltonians H,, ., n=
0, 1,... and the mass (. qdx are constants of the motion. This is true for any
of the flows in the KdV family. The only difference between (KdV); and
{KdV),,..1 as given by (3.9) (recall that the ¢t in (3.9) for n =1 is 4 times the t of
(3.52), (3.53)) is that in the former case

b,= 2i¢°b, (3.94)
whereas in the latter

b, . =2it**1p, (3.95)

2na1

So, whereas in physical space it is difficult to see the connections between flows
n=1, 2,3, etc. (compare (3.15), (3.16)), in scattering space their difference is
trivial and involves only a different power of ¢ and ¢, in the phases of b(¢, 1)
and b, (). For this reason we may easily take linear combinations of the flows;
nothing changes except the phases of these two quantities. For example,

G = G, + PG, + g, t+- -
gives a, =0 and
b, =2i(a>+ L+ v+ - )b,
bie =2i(adi+ BLi+vLi++ - b,
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One consequence of this is we can write the general multisoliton solution (3.88)
for all the flows in one formula. Simply use the appropriate phase speed X,.
Recall that b, = *™% = ¢ "%»*, The multisoliton formula for q(x, t,ts,...) as a
function of the pure flows (3.9) is given by (3.88), (3.89) with

H, =2i(x+ Gttt -0, (3.96)

The effect of an infinitesimal change in the potential. Our next task is to
determine formulae expressing infinitesimal changes in the scattering data as
functionals of infinitesimal changes in the potential q(x). This is an important
calculation for a variety of reasons as we shall see. If q undergoes a change
q — q + 8q, the corresponding infinitesimal change in {(x, {) for real { (fixed)
satisfies the equation

(8 + (L% +q)8% = —Bqi (3.97)

We know two linearly independent solutions i(x, {), Y(x,—~{) for the
homogeneous equation, and therefore (3.97) may be solved by vanation of
constants to give

tb*—?b(x C)I 3q(y)(y, C)dy— 2it P(x, C)j Sq(y Wy, Oy, —&) dy.

Letting x — — gives

6a=—12] Sq(W G Db (e, £) dx, (3.982)
8" ==z | datents, Dbt ~0) . (3.98b)
7).
From (3.98), "
* 1
E sl o

The easiest way to find 8, and 8y, is to assume that the analytic extension to
{ =, exists; even if it does not, the resulting formulae are correct as the
change in q and ¢ does not depend on whether the initial data g is on compact
support or not. One small difficulty with this is that for ¢ real, b*(¢) is b(—{).
For { complex, the extension of b({) to { = ¢, must satisfy b()b(—&) =1
since a(f.)=0. Hence the extension of b* to £ =¢ is —1/b,. I will leave it as
an exercise to the reader to show

Ve

8 = T 'L) Squrt dx, (3.100)
ay 1 TV “ ag”

SBk (a;c gk)Bk 8&( = Z'Cka"cz [_m o ( a{ ) dx (3101)

where B, =~1/b.a,, a;, a; and (8¢*/a), are the first and second derivatives of
a({) at & and the first derivative of * with respect to ¢ at §. Formula (3.100)
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is familiar to quantum mechanicists and expresses the change in energy level as
a function of the change in potential.

We will now use (3.98a) to establish the relationship (3.17). It is not difficult
to show directly that for L given by (3.12),

1
-z ( )=— . (3.102)
(L-29 o )2
Solving iteratively, we obtain that
Y 1v 1
—~1-= L"
a(c) 2 § €2n+2 q
Therefore, using (3.98a),
Slna_ 1 ¢ 1(1°°1 )
1—= — L" (3.103)
6q 2iLa(l) 2iL o {2
Now compare (3.103) with (3.65) and (3.69) and find
8H2"+1
Ltq =—2+1 (3.109)
"%

This is (3.17) and it is very important for it enables us to write all the flows in
Hamiltonian form.

In the next section, we are going to tackle the problem of what happens to
solutions of exactly integrable equations when they are perturbed and will
make heavy use of the material of this section. Before we go on, however, 1
want to mention another feature. As we have pointed out in Section 3d, in the
small q(x) limit, (ik/27)b(k{2) is G(k), its Fourier transform. This connection,
together with the realization that the change in the scattering data is expressed
in (3.99), (3.100), (3.101) as an inner product between 8q and the squared
eigenfunctions and their { derivatives suggests that an inverse relation is
possible in which 8q is expressed as a function of 8(b*/a), 8, 8B.. This is
indeed possible; for details I refer the reader to reference [75). We find

o ES 2 2
8q(x, t)=—-1—j a(b )aqb (x, &) dé+2i Z 8Bka¢ (x &)
T I a

2
+2;.Z B bl (84’ &, O)z. (3.105)

k=1 ax
The set of x derivatives of the squared eigenfunctions

q'>2(x &) P%x, §)
ax °  alox

{f’__(x £), ¢ re k=1,...,N} (3-106)

form a basis for functions in the class (3.63). You should verify from (3.99)-
(3.101) that if the change 8q is brought about by any of the time evolutions of
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the KdV family, then
b* - 2n+1 b* e 2n+1 d
N )= e S 0, &Bx=—2ii"" Br. o = (3.107)

To see this when n =1, for example, replace 8q in (3.99) by —4(q,, +3¢%)s
integrate by parts and use the equation that (%), satisfies in order to calculate
the integral.

Finally we point out that g(x) itself can be written

2 <o N
=2 ROV d-4Y w6 z). (G108

—00

Equation (3.108) is easily found by considering

2 [~ _2 07 (¥ Do, D)
2| mowepa-Zp| (rEoERd-

where P is the Cauchy principal value, and evaluating the right-hand side by
deforming the contour to the semicircle at |¢|=cc, Im {>0. From (3.27) we
know ¢fa ' —1~qf28°+- - - as || ==

Remark. From these results, we see that integrable flows lie on an infinite
family of surfaces

1) dz,  (3.109)

|R(&)|=constant, & =constant. (3.110)

Because of the obvious analogy with finite dimensional Hamiltonian systems,
we can think of the intersection of the level surfaces (3.110) as an infinite
dimensional torus. General perturbations which do not fall into the integrable
class—like the effects of a slowly changing depth (see the following section)—
can induce changes in the trajectories both within and orthogonal to this torus.
From (3.105) we can see that changes which stay within the original torus form
a vector space spanned by the vectors d¢>/dx, whereas the changes normal to
the torus are spanned by the { derivatives of these quantities.

3g. Perturbation theory. Solitary waves in channels of slowly changing
depth. In Section 2b, we derived (2.16)

G- +644e + Gess = —%%q (3.111)
as a model for the right going propagation of small amplitude, long waves in a
channel of varying depth. If the relative change in depth DD is small
compared with the length of waves in question, the 7-dependent parameter
I'= +2D_/D is small, of order o say, where 0 <& < o« 1. One would imagine
that such an innocent looking problem could be solved in a straightforward
manner by standard perturbation techniques but such is not the case. It took
almost ten years to clear up most of the difficulties associated with (3.111) and
its relation to the full two-directional water wave problem. There are still some
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questions open. Therefore, it is an excellent vehicle for illustrating the various
avenues for attacking perturbed soliton equations. The results I am about to
describe were obtained in a series of papers with my colleague David Kaup
[45] and later with my student Collen Knickerbocker [43]. Karpman and his
colleagues [46] independently made many of the same discoveries about the
same time.

The problem we consider is: imagine that a solitary wave

q(0, 7) = 2n3 sech? no(0 —4mi7— 0,) (3.112)

meets a change of depth at 6 = 7 = 0. (The reader should recall the connection
of the new coordinates g, 6, v to the old ones:

1({* dX 1(*
6=—t+;j DB’ 7=gj- DV3(X)dX, X = &x;

the elevation N is proportional to D?q where D(X) is the nondimensional depth.)
Our goal is to describe the subsequent evolution. Many approaches are possible;
one is better than another in certain aspects but there is no uniquely correct
method. In (i) and (ii) below I will describe the direct perturbation method and
the inverse scattering method respectively and point out their merits and
deficiencies. The method followed in (iii), which I call the judicious use of
conservation laws, when used with some understanding of what to expect, an
understanding originally gained from (ii), is the one I recommend. In (iv) T will
describe briefly how to use (iii) to overcome the incompatibility between the
constant mass flux M = {7, D(x)U(x, t) dt for the full two-directional equations
and that conserved by the unidirectional approximation m o
17 D¥*(x)U,(x, t) dt. In the exercises there will be several examples to test
you.

(i) The direct approach. The most obvious thing to do is to look for solutions
to (3.111)

q0,7)=q®+oq™V+- - (3.113)

where one assumes q© to have a solitary wave form (3.112) except that %, the
amplitude parameter, 1s a slowly varying function of +(n(T), T=-07) and the
corresponding phase speed is

6, = 4m%+ O(o). (3.114)

It is natuxal then, to use a coordinate system moving with the solitary wave
£=60—0, s =1 whence the equation for ¢ is

40— 47242 + g2+ 6P +6qOqP = —T/og®—qP.  (3.115)

Observe that for general g“(0, 7) it is very difficult to solve (3.115) because it
does not separate in any obvious way (method (ji) automatically will know how
to achieve this). However in the present case, because g is simply a function
of ¢, this can be done. If we look for solutions ¢ which only depend on & and
not on s, then we know the solvability of (3.115) demands that the RHS is
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orthogonal to solutions of the adjoint equation LAV =-—-V,, +4n?V,—
6q @V, =0 which decay as £ — +oo. The only candidate is q© itself. Hence
we require

3 [ o 2I' 7 op
9 I 4O do = _._I 4 do (3.116a)
oT J_ o Jo

which gives us that
7, = 3. (3.116b)

If we do not demand (3.116a) and allow g** to depend on s, then it will grow
linearly with s and destroy the uniformity of the asymptotic expansion (3.113)
over long distances s = 7= O(1/0).

Next we solve for g and find

r
4" =g =1+ tanh ng + sech® ng(3—3ng tanh né +2né — 20°¢” tanh md)}
r 2
+2 (1-tanh ) sech® n¢.

Note that as £ — +oo, ' = 0 but that in the lee of the solitary wave ¢ — —oo,

q“)->-L, (3.117)
37
a nonzero (almost) constant. Ouch! The series (3.113) becomes nonuniform in
the lee of the solitary wave. This fact was originally discovered and verified
numerically by Leibovich and Randall [82].
But there is worse to come. Let us check the exact conservation law,

5‘3; Eo q(6) do = -—rL q(6) do (3.118)

which is the equation describing mass flux conservation m = { D%*q dé for the
right going flow. (I will use small m to distinguish it from the true mass flux M
of the full two-directional problem.) If g can be approximated by g‘?, then the
LHS of (3.118) is (8/07) (4m) = 4m(—31") whereas the RHS is —I'(4m). Therefore
(imagine I' <0, D decreases), of the amount of extra water accumulated by the
changing depth situation, only § goes into the growing solitary wave. Where
does the rest go?

Whereas the problem with (3.117) had been noted by the direct pertur-
bationists, the last difficulty just described had not.

(ii) The inverse scattering approach. How are these two difficulties overcome?
In 1976, David Kaup and I reattacked this problem from the point of view of
inverse scattering theory. Our rationale was that the most natural way to
examine the effects of perturbations was to convert the perturbed equation
straight away into the action-angle variables or normal modes of the exactly
solvable system. Kaup [73] had previously shown how to write down these
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equations for the perturbed NLS equation. In this approach, we go directly to
(3.99), (3.100) and (3.101). Recall that if 8q or g, evolves according to any
member of the KdV family, say (KdV), as in (3.52), then all the integrals may
be calculated to give respectively, 8iZ°b*/a, 0 and 8if}b*/a. To calculate the
effect of the perturbation —I'q, we simply use the leading approximation to q,
the one-soliton solution and calculate the corresponding squared eigenfunc-
tions. We know for example from (3.110) that for a pure one—soliton solution
(& =im) q=—4v, L1 ¢*(x, {1) and thus (3.100) becomes ;. = in, = —35il'n which
is exactly (3.116b). When we used (3.99) to compute how much continuous
spectrum is excited (remember at 7=0, b*/a =0, we found that a singular
contribution arose from the neighborhood of £ =0 and gave rise to a corres-
ponding new flow field q. which for short distances is

T -
-, 0<6<G,
q.(6, 7)={ 37

11
0 elsewhere. (3.119)

A shelf is created which stretches between 8 =0 and the present soliton
position @; in the original coordinates, it stretches between the solitary wave
and the point to which the longest linecar wave would have travelled from the
position at which the depth change first occurred. It has exactly the amplitude
of that part of qm, namely (3.117), which did not decay as & — —o. This is the
shelf which Leibovich and Randall had observed, but they did not understand
in what sense it had a finite range. While the shelf is slowly varying in
amplitude, its range varies at an order one rate. This means that the response
of the solution to the slowly changing depth is not, repeat not, purely adiabatic!
It 1s this feature that allows us to satisfy the local mass flux law,

g [ oD r"
— = ——— de. 3.120
2 L qdo=—2:| qdo (3.120)

Since q. is slowly varying and small, from equation (3.111) we expect,
aq./oT = —3(D,/D)q. which is simply Green’s law, that along right going charac-
teristics 6 = —t+ [ dx/DV?, D*%q, is constant. Hence the LHS of (3.120) is (call
=2D /D)
447

a [~ a (° 2\ a6 aq
— de+-~j . d6=4 (———)+-— j c
= L q; il N N3 q.(0)+ de

21‘) ( r ) L‘”
=4y -=)+4
41]( 3 N 3n 'l q.40

oo )
=—rj 4. de—rj q. d6,
o 0

which is the RHS. Note the crucial importance of the second term —3»T" which
comes from the fact that the flow is not adiabatic (the range of q., 0<0 <@g, is
not slowly varying). Indeed we could have calculated the initial amplitude



SOLITON EQUATION FAMILIES AND SOLUTION METHODS 91

(“initial” meaning its amplitude on creation immediately behind the solitary
wave) of the shelf by using the local mass flux deficit; that is instead of verifying
(3.120), we can use it to obtain q.(6).

The great strength of the inverse scattering method from the theoretical
point of view is that it converts the perturbation equation directly into the
“right” coordinates. In effect, it solves the most important problem facing the
direct perturbation method, how to separate (3.115). The basis in which to
expand q'¥ is (3.105); in that basis (3.115) automatically separates, no matter
how complicated q®(6, ) is!! Furthermore, the formulae one obtains for the
time dependence of the coefficients of @' in that basis, namely the time
evolution of the changes in b*/a, {, and B, induced by the perturbation, are
exactly the same as one obtains by expanding (3.99)-(3.101) in a perturba-
tion series with 8 = d/o7, q. =(q,); +{4.),((¢.); is the integrable part of (3.111),
(g.), the perturbation part). The squared eigenfunctions are approximated by
their one-soliton expressions.

The weakness in the method is a practical one. It is clear that over long
distances new flow components (which are O(o) in magnitude but which carry
an O(1) mass flux) are created. Therefore, the approximation of using the
one-soliton eigenfunctions in (3.99) is invalid over long times. The reason is
that the correction to the squared eigenfunction has singular behavior near
¢ =0. One can, however, use this approximation over long times in (3.100).
Nevertheless, despite these weaknesses, the inverse scattering approach did
provide the key into solving the vexing and crucial question concerning the
mass flux balance and for that achievement alone deserves high marks. I now
will describe an approach which uses to best advantage all the experience
gained from methods (i) and (jii) and which can deal successfully with the
problem of describing the evolution of the shelf over long (O(o ")) distances.

(iti) Judicious use of the conservation laws. Knowing what we know, this
turns out to be the best method. We know that the conservation laws are exact;
using the one for energy

o

a o0
P j q> df = ——2I‘j q> do (3.121)
7)o

0

and indeed any of the later ones we find (3.116b) by replacing q by the slowly
varying single solitary wave. The reason this is valid is that the new flow
components induced by the perturbation are O(o) in amplitude and at most
O(c ") in length. Therefore the only conserved density to which they contri-
bute an order one amount is the mass flux. The correction to the energy and
higher conserved densities is at most O(o). All the conservation laws from
encrgy on give the same behavior for 7, namely (3.116b). Now we know
already that the changing solitary wave cannot absorb (think of ['=3D_/D <0)
sufficient water to satisfy the mass flux law
d

— j qdo = —F.[ q do (3.122)
oTJ . o
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F1G. 4. The right going shelf.

and that, directly in the lee of the solitary wave, a shelf of amplitude
g. =—T'/3n 1s created. We can deduce this as follows. Assume that the field
q(6, 7) consists of a solitary wave component g,(6, ) with slowly changing 1
given by (3.116b) and a shelf component q_.(6, 7) stretching between 6 =0 and
6 = 6, the present location of the solitary wave. Since g, is slowly varying in 6
and small in amplitude, its evolution in 7 is given by Green’s law which, if
I'=%D_D, means that 8q./o+ = —Tq, and that D*q_ is a function only of 6 and
therefore a constant along right-going characteristics. We now use (3.122):
(8/o7)4m +q.(6) - 6, =—T(4n) and therefore, q.(6)=—T/37. In order to find
q.(6, ) everywhere, consider Fig. 4. We know that D%?q.(6, 7) is constant
along the path 6 =constant. Therefore, follow the right going characteristic
through 0, 7 back until it intersects the soliton path. At this point we know g,.

Hence D%(z.)
DQM(‘T)

where q. is given as a function of 6 by integrating and inverting the solitary
wave path formula 6, = 4>

q.(6,7)= q.(7),
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To make things concrete, let us consider an example. Let —3D,/D =0, a
constant. Then

n= n062’3m

The solitary wave path is

2
g, =318 1)
o

Now, we know that at P,(8,, 7,)

( ) a o
AT = =3 €
R T30@) 3m

—2/307,

We also know that

_ ag _
q. (0’ T) — eo‘('r Ts)qc (,rs) — e”e 5/30'1!,

37
which from inverting the soliton path formula is
o of\
qc(ea T)z_—em(l +_'__) .
3m0 3n5

Let us now calculate the mass flux associated with the shelf component,
8
m, = Dg“('r)j q(6, 7) d6.

0
Using Green’s law, namely the fact that along a 6 =constant characteristic,
D*(7)q(8, 7) = D*%(7,)q.(6 = 6,, 7,), we can write this as an integral over 7, the
solitary wave path variable from 7, =0, the point at which the depth change
began and 7, =T, the present position of the solitary wave.

T de
m = I D**(1,)q (6, 7,) —— d,
0 d'rs

- ) 9/4 _ 3D, () 2
[ (- B e @

=~3noj D "(z)D,(s,) d=,

0
and since nD*? = 1,D¥?* = n, (because Dy= 1),
= dn—4n,D*4(3).
But the mass flux associated with the solitary wave is

m, = D7) - 4n(7) = 4noD¥4(7).
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Therefore, the total mass flux associated with the right going component of the
flow,

m=m,+m.= I D®*(1)q(8, 7) d6 = 4n,,
is indeed a constant as equation (3.111) demands.

Before we tackle the problem of the discrepancy between the mass flux
carried by the perturbed KdV equation which describes the right going compo-
nent of the flow and that associated with the full two-directional flow, let us
consider the nature of the shelf in terms of scattering data. Recall the first of
the trace formulae (3.70) which expresses the mass content

@ N o
| qao=an+2 [ ma-irp a

oo 1 O
in terms of the scattering parameters. From (3.111), [=.qd@ is exactly
4n0(1/D)*%. The solitary wave component g, of the field g with which we
associate soliton 1, has mass 47, = 4n,(1/D)*2. If 1> D, the depth decreases;
then since the contribution of the mass from the continuous spectrum (2/w)
o 1In (1—|R[) d¢ is always negative, g, must be resolved into solitons in order
that (3.70) can balance because 1/D*4> 1/D*?2. The shelf which in this case
has a positive amplitude of order o, and a width of order o~ *, will decompose
into a large number of solitary waves whose spectral representation is a set of
G=in, k=2,...,N which are densely packed along the imaginary axis
between { =0 and £ =0(io). (Think of Exercise 3d(3) with Q =0, L=1/0))
Eventually, in a time (1/0) In (1/0), the solitary waves contained in the shelf
will separate from each other.

It is quite surprising, 1 think, that what looked like a harmless perturbation
is so very difficult to analyze. Although I do not fully understand the connec-
tion, part of the reason is that its influence on the “conserved quantity” § q dx,
the Casimir functional arising from the degeneracy of the Poisson bracket
(3.25), is so very different from its influence on all the other constants { g dx,
§Gai—q’)dx,....

(iv) The reflected flow [43]. We now seek to find the reflected flow field
n_(x, t) and u_(x, t) which is generated by the interaction of the right going
component 7,(x,t) and u,(x,t) with the depth change. We use the same
strategy as before. First, we calculate the value of u_ on the right going
characteristic 6, =0 as follows. Consider Fig. 5.

Let us fix x, 0<x<x, where x is the present position of the solitary wave.
Since the amplitude of the reflected flow turns out to be O(o€), we can, for the
purposes of this calculation, ignore the difference between the solitary wave
path and 6, =0. Also n_(x,t) and u_(x, t) will satisfy the linear equations

n_+(Du_), =0, (3.123a)

u_,+n_,=0 (3.123b)
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(x,t{x))

7 6:+=0
P(x,z)
soliton path
6‘=O (X,t*(l)) R}(}’;t)’)

FI1G. 5. The reflected flow.

(see (2.11), (2.12)) in the triangular region of the (x, t} plane shown in Fig. 5.
Let t.(x) be the point at which x intersects 6, =0 and ¢_(x) the point at which
x intersects the left going characteristic through the present position (%, t) of

the solitary wave. Then since {~., D(x)u(x, t) dt is independent of x to leading
order in g, we have

t (x) @
9 j D(x)u_(x, t) dt+£ D1’4(x)(J D¥4(x)u,(x, t) dt) =0.

0x J;
(3.124)
The second term in this equation is
iD.D ¥'m

where m =£n,, the mass flux associated with the right going flow, is indepen-

dent of x. Equation (3.124) tells us that (recall dt /dx= 1/VD, dt_{dx=
—1/V/D),

~DY(x)u_(x, t.)— D" (x)u_(x, t.)+n_(x t)+n_(xt,)
=4, D,D 7 —q_(x, t )+ m_(xt,)
= _%nﬂDxD_3/47

where we have used (3.123a) to replace (Du_),. Adding and subtracting
DY (x)u_(x, t,), we have

— s

Dx)u_(x, t,) =in,D™*D, —%Q (n-+vDu), +i21—) (n +vDu),.
(3.125)
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Now we can take x as close as we like to ¥, in which case t, >t — ¢ and
(3.125) furnishes two pieces of information. First, immediately behind the right
going solution component

D(@)u_(x, t)=3in.D VD, (3.126a)
and second
o0
= (n_+vDu.)=0. (3.126b)

Sincc the same argument would apply no matter where the right going
component is along 6, =0, we have that u_(x, t) on 8, =0 is given by (3.126a)
and that (3.126b) holds throughout the triangular region in Fig. 5. A little
calculation with (3.123) and (3.126b) shows that

G 3)on )0 127

which means that both n_ and Du_ are constant along 6_ characteristics.

These facts were checked numerically by solving (3.123) as a Goursat
problem; given u_, n.=0 along 6_=0 and given u_ from (3.126a} on 6, =0,
find 7_, u_.

Therefore, Green’s law does not hold for the reflected wave. The reason is
that Green’s law follows from a geometrical optics argument in which the
background changes slowly compared to the horizontal gradients of the wave.
Here both (1/u_) du_/éx and D JD are of the same order of magnitude; both
are O(oe). From (3.123a), it is clear also that the amplitude of the reflected
wave is O(oe). However its length is O(oe) ™" and therefore it carries an order
one mass flux, which we now compute.

Let x = x; be the point at which the depth again becomes a constant Dy. Then
the total mass flux through any station x should be equal to the total mass flux
of the right going component through x; because after this point there is no
further reflection. We have already computed the flux of the right going flow
component {0 be

SnoD4(x).
We seek to show that the mass flux of the reflected wave is
oD — DY4(x)).

Consider

tf
I D(x)u_(x,t) dt
()

and write this as an integral along the path 6, =0 from x = x t0 x = x; by using
the fact that Du_ is a constant along a 6_ characteristic. Note that the
t-coordinate at P(x, t) in Fig. 5 is related to the x~component of P,(y, t,), the
point at which the left going characteristic ¢+ §* D™V*(s) ds = t, + [ D™"*(s) ds
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through P meets the curve 8, =0, t, = D™ "?*(s) ds, by

x y
t+J D *(s)ds = ZJ D~ Y2(s) ds.

Therefore,
J'xf (1]2 D_IM(Y)D (Y)) 2 dy = J'xl 21-!9 D3l4()7)D dy = % (Dll4__Dll4)
L \3 Y DYA(y) . 3 > 3

as required.
The reader should note that the total mass flux through a station x is
constant and equal to

%’noD;M-
This means that as D; gets small, most of the water in the incoming wave is
reflected and very little propagates through to the beach.

Exercises 3g.

1. Find how the solitary wave parameter n changes and the shape of the
shelf for the following examples given that g(x, 0) = 2mJ sech? nx:

(@) g +6qg; t Gy = 0Gr, 0< 0o < 1

() q.+6q°q + Gux =0q, 0<o <1,

Answer.
16’:’]%01)”2
= 1+
(a) 7] TIO( 15 H
8Neo (—ZO'x)
. = e , 0<x<x,
=15 P\ 15
X, = 41]2.
(b) Tl = "]‘nezm,
wae’” 0< 3 <5
g = —_———1 x x,
q n%+40'x
X =n>

2. Use the conservation laws
o ., @ j
° | ag* 2 | (aqz-a*q) d
atjqq X (gax— g™ q.) dx
to find how the parameters 7, £ of an NLS solitary wave
q(x, t) = 2m sech 2n(x — X) exp (—2itx — 2iF)
satisfying

q = iq,, +2iqg°q* —Tq—Ee*", T,E«l1
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change. Show that (én), = —T'(én). Assume that £=0; then show that

1, = —2I'n +37E sin (wot + 27), g, =—27%
Analyze these equations and show how the solitary wave phase locks to the
forcing frequency w,. For details, see reference [45].

3h. Multisoliton, rational and finite gap solutions [25]H29], [83]}H85].

What we are going to do. The first goal of this section is to introduce
multisoliton solutions for the KdV family in a new and instructive way. The
approach is instructive because it focuses attention on the unique structure of
the eigenfunctions (x, t;,,; ) which are associated with the multisoliton
solution. Under proper normalization, they are the product of a polynomial in
¢~ with a simple exponential. Indeed the derivation of the solution formula
makes explicit use of this structure. The rational solutions are then introduced
in the same way and their connection with the multisoliton solution is noted.
They are a special kind of limit. In both cases, the formula for g(x, t,,.,) is

2
q(x, tye1) = ng—z Int
where 7 is a (NXN) determinant which when expanded assumes the form
(3.88). In the rational solution limit, 7 is a polynomial.

The second and by far the longest part of this section is devoted to the
derivation of the finite gap or the multiphase, quasiperiodic solutions. This
means that g(x, tor41) is a periodic function of N phases 6, i=1,..., N, each
linear in x and ty 4, 6; =Y caa G 4 t1=X. Because the ¢; are not necessarily
commensurate, ¢ is only quastperiodic in x and #5,,,. The one-gap solution for
the KdV equation ¢, +6qq, +q., =0 is

o —y
2

o —
q(x )=B+(a—B) cnz{ (x—2(a+B+v)t—xo);E}.
I have broken the calculation of these solutions into three segments. In the
first, I show you how the N-gap solutions are connected with a Riemann
surface

R:y2=—_l;lo()\—)\q-),

which is independent of t;,,,, kK =0,..., N. In the second, I introduce the new
coordinates g;, j=1,..., N which lic in the fixed intervals (Ay_,, A5) =
1, ..., N. The calculation of their dependence on t5, 4, k=0, ..., N, given by
(3.167), is neat and swift. At first sight, however, these equations do not seem
to be any more simple than the equations from which they were derived. In
segment three, however, I show you that if we construct a map from the
Riemann surface R, on which the u’s live, to a new manifold called the Jacobi
variety, then the coordinates on the Jacobi variety which correspond to the p’s
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move linearly with the times. The solution for g(x, t,..,) is

2

d
C+2:i?1n @(61, 02, e ey BN)::

where c is a constant, © is the Riemann ® function and 6; =3} ; jag G;t;, With ¢, ¢;
determined. We note that, yet again, the solution has the form 2(d%/dx?) In 7.
This time 7= @e' /4>’

The multisoliton and rational solutions. If you look again at (3.84), you will
notice that the eigenfunction ¢s(x, t, {) as a function of ¢ has the form of a
meromorphic function with poles at {=—{, =—in, k=1, ..., N, the eigen-
values. One could also renormalize yi(x,t;{) by multiplying (3.84) by
MY (£ +im,), whence it would look like e times a polynomial of degree N
in £7*. Since the renormalization does not involve x or ¢, ¢ will still satisfy (3.1)
and (3.92).

Motivated by these comments, let us seek multisoliton solutions to the full
KdV family (3.9) (the first three are listed in (3.14)-(3.16)) by looking
for solutions of (3.1) and the companion family (3.3)

v, =3B¥Fv—-B%y, (3.128)
where
B®=-A*+BA*'+---+ B, (3.129)
in the form
C, C Cy
)=+ 22 +---+~——), 3.130
with
H=ilx+il’ts+- - +il*™ Myt . (3.131)

The translation flow g, = q, is not included here; it can be reintroduced by
substituting x +¢, for x. The compatibility of (3.1) and (3.128) ensures that
q(x, ts, ts, . . .) as function of t;, ts, . . . is a solution of the KdV family. Substitut-
ing (3.130) into (3.1) and comparing various powers of { ' gives us relations
between C,, C,, ..., Gy and g and its x derivatives; indeed C;, C,, ..., Cy are
the first N terms in the asymptotic expansion derived from (3.27) of v(x; {). In
particular, the first two are:

q=-2C,, GC,= c§+g. (3.132)

The fact that Cy,, =0, r=1, means that the solutions q(x, ts,...), which

emerge from this procedure, satisfy a set of nonlinear ordinary differential
equations. We will return to this point later in the section.

Since v(x, {) (x=(x, t5, . ..)) satisfies (3.1), so does the linearly independent

v(x, —¢). If we think of v(x, {) as being proportional to (x, {) as defined in

Section d, then v(x, —) has the form of the asymptotic expansion for ¢(x, {).
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We know that at the eigenvalues {=in, k=1,...,N, ¢ and ¢ are propor-
tional. Motivated by this observation, we determine the functions Cj, ..., Cy
by demanding that at the N distinct locations {=im, 7. >0, k=1,..., N,

o(x, i) = e >R (X, —img), (3.133)

e 2% being the constant of proportionality. (3.133) is then a set of N
equations in N unknowns which can be readily solved to give

2

q = ‘—2C1x 2';;1_2111 W(ﬂl, 02, “e ey 9N)° (3-134)

In this formula, for N odd,

cosh6, —m;sinh6;, mn3cosh@,---
W=det| : . (3.135)
cosh 6y, —m sinh 6,

For N even, the first column is {sinh 6;} and the other columns change alternately
between sinh 6; and cosh 8. The phase 6; is linear in all the independent
variables and is equal to (the H was defined in (3.131))

6; = H(imy) + mi%; = m(x — %)+ 1 ts— s - - -
The reader can calculate directly the first few: N=1: then (3.133) is

(1) =147,
™ m

whence C, =7, tanh 6,, g=—2C,, = 23 sech? 6,, the one-soliton solution.

Now let us turn things around. Consider v(x, ), v(x, —¢) given by (3.130)
and demand that (3.133) holds. Then from our previous analysis, v(x, {) is
unique (the C,, ..., G;’s are uniquely determined); there is one and only one
function v(x, {) which satisfies (3.130), (3.133). I now claim that the function
v(x, {) defined in this way satisfies (3.1) and (3.128). Let us check by direct
calculation;

Therefore the function w(x), which is defined to be

d, d
? xXxX + 2 2C x ( * N )
wx, )=v,+( wv=e u: (@N
where d; =C,, +2C.,,, j=1,...,N—1, dN Cisr has the form of a polyno-
mial of degree N in 1. But all the d,j= , IN must be zero, for otherwise

we could add w(x, {) to the previous v(x, {) and the sum v(x, )+ w(x, ¢) would
also satisfy (3.130), (3.133). But v(x, {) is unique and hence w(x, {)=0. Thus
v(x, {) satisfies (3.1) with q=-2C,,. As an exercise, show by a similar
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argument that

qx
oo (oo

It is worth going through this argument carefully. Such kinds of arguments
using the uniqueness of functions appear again and again in the beautiful
theory of Krichever for finding the finite gap solutions of the KAV family.
The rational solutions are obtained as a special limit of the multisoliton
solutions. One allows all the ¢ to tend to zero in a proportional way and the
constant of proportionality in (3.133) becomes (—1). The reason for this
becomes obvious as we calculate. Take N =1 and apply (3.133), whence

eH({l)(l +_(_:_1) — e+2i2;,x H(—¢& )(1 _9_1)
lgl lgl

Now, expand about £, = 0; in order for the ;' terms to balance, we must have
e?¥*1— —1, Tt is as if we made the phase shift X, = n/2{,. We obtain, after
taking the limit {;, —0, C;x+1=0 or C;=—1/x =—(d/dx) In x. Hence
d? 2
q=25—21nx— —;5. (3.136a)
The reader should verify that for N=2

2

q=2 i In (x°+ 31). (3.136b)
dx?

The limiting procedure is tedious but straightforward. The N-phase rational
solution is given by

d2
q= 2 a? TN (3.137)

where 7y can most easily be obtained by successive applications of the
Bicklund transformation (4.107).

The finite gap solutions and their connection with a fixed Riemann
surface. We now turn to the finite gap solutions of which the multisoliton
solutions are a special limiting case. The name arises from a study of the
periodic problem for (3.1). Given g(x), periodic in x on an interval {0, P], then
it is known that the spectrum (the set of values ¢ = A for which at least one of
the eigenfunctions of (3.1) is periodic or antiperiodic) consists of a discrete set
A< A BN <AR=A - - <Agn1=Ag, - . (Ag, Az, Ay, Aq, Ag, ... correspond
to the periodic elgenfunctions; A, Aa, As, Ag, . - . to the antiperiodic ones.) The
bands (A,, 1, Ao}, which may have zero length, are called the unstable bands
as, in these regions, the corresponding Bloch eigenfunctions, defined by the
conditions

d}:t(x, g) = 1: X=Xq, 0= xoéR Xo ﬁxed,

Y(x+ P, )= pd(x, 0),
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grow exponentially with x (i.e. p, which depends on ¢ is greater than 1 in
absolute value). If g(x) is such that only a finite number of unstable bands, say
N, are open, then it is called an N-gap potential. Since under any flow in the
KdV family the spectrum is invariant, q(x, ts, ts, . . .} remains an N-gap poten-
tial for all values of t, ts, . . . and, as we shall see, represents a solution which is
quasiperiodic in the time variables. The general solution of the periodic
problem is a limit of the N-gap solutions as N — . The reader is referred to
reference [29].

The class of solutions which we investigate in this section arises by relaxing
the condition that g(x, t3,...) has a fixed period P in x. The resulting N-gap
solution will be a quasiperiodic function of x as well as of t5,..., thni1. We
begin by writing equations (3.1) and (3.128) in system form

V, = (:'f i‘é)v =QMV, (3.138)
4 ilq. G +29°

i ‘21 G P,
V.= Vv=0Q®V, (3.139)

’ _C2+ﬂ C _qu qx

2 2 4

and, in general,

I72N+1 = Q(2N+1)V (3.140)

Suppose we were to seek a solution to

G, = —i(Gexx + 6494, ), (3.141)

the solvability condition of (3.138) (3.139) in the form q(X=x—ct;). Let
X =x—ct;, T=1;. whence (3.138), (3.139) become

Vx = QMYV, Vor=(Q®P+cQM)V. (3.142)

But the coefficient matrices only depend on X and therefore one can solve the
T equation by separation of variables, V= Ue®", whence (3.142) is

= Q[ (3.143)
yU=(Q®+cOM)U =QU. (3.144)
The compatibility of (3.143), (3.144) has Lax form
Qx =[0", Q] (3.145)
which, if you work it out, is
Gocx +6qGx —Acgx =0 (3.146)

and admits solutions

QX, &)= U(X, HQ(Xo, HUT(X, D), (3.147)
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where Q™ and U are related by (3.143). Hence the characteristic polynomial
of Q is independent of X and
R(y, ) =det (Q—yI)=0 (3.148)

is an algebraic curve with coefficients constant in X. In the present case, (3.148)
has the form

y2=h2+ef, Q:(h e),

f —h
3 2, [9xx+3q° J\, (ax . (4 dxx +2q°
=—A"—2¢cA“+ A T—Cq—c + Ig*f- E—C -———T—"FCq
where A = {2. But from (3.146)
+3g>
___q._._x_X.___..q__._}_cq:El
4
and
_ax_4’ E‘ﬁ,ﬂgle
16 8 4 2 2
whence
y2 = "—AB - 2CA2"'"“ (E] + CE)A - (E2+ CEl). (3.149)

Equation (3.149) defines a Riemann surface of genus one (topologically
equivalent to a torus or doughnut) which is independent of X.

Conversely, suppose we add the constraint yV = (Q"”+cQ™)V to (3.138)
(3.139), then q depends on x, t; only through X = x — ct; and (3.146) holds. To
see this more generally, let us add to the list (3.138)—(3.140) the constraint

yW=QV, Q= (;‘ _eh), (3.150)
with
N
Q=Y U, Q%" Q¥ V= (h' W ) (3.151)
0 .ﬁ' —hr

where the u,,,, are constants. Differentiate (3.150) and use (3.138) and the

fact that
QL — QG+ L[QW, Q@] =( (3.152)

£2541

to show

N
(1 _
E Uzt Qt2,+1 =0
0
or

N
Y tz1G,.,=0. (3.153)
(4]
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We can look at (3.153) two ways. First, as a first order partial differential
equation in X, fs, ts, . - . , fan+1, it tells us that q is a function of the N phases
constructed from

o3, 222N (3.154)

which depend linearly on x, 5, ..., t;y.1. But we can also interpret (3.153) s
an autonomous nonlinear ordinary differential equation of order (2N +1) in x;
replace q,, , by

0 8Haa_ 8

L :
ox oq ox | (3.155)

where the operator L is given by (3.12). The N-gap solution q(x, s, . . . , tanr41)
with the independent variables constrained by (3.154) is, therefore, when
integrated once, a nonlinear autonomous ordinary differential equation for g as
function of x,

N
Z U, ,1L."q = constant. (3.156)
0

Equation (3.156) is known as the Lax—Novikov equation. Since all the flows
commute and are compatible with (3.156), equation (3.156) describes the
shape of the N-gap solution for all times ¢, 5, 5, . . ., t,n_;. In fact, we shall
see shortly how these times parametrize its solutions. Furthermore, the time
flow with respect to t,,,,.; for m= N,

a m
Gamer = 5 L"q (3.157)
may be written as a linear combination of the time flows q,, ., r=0,...,N—1
(t, = x) by using (3.156). Therefore the N-gap solutions are solutions not only
of the first N members of the KdV family but of the infinite KAV family.
The new coordinates and their time dependence. Now how do we find these
solutions? In inverse scattering theory we started from the x equation (3.138)
and derived from it the scattering data whose time evolution was found from
(3.139), (3.140). This is the way we would also proceed if we were doing the
periodic-in-x problem, although as I have mentioned previously, the time
evolution is difficult to obtain because we do not have a point at o (x = +)
where q is known for all time. However, for studying the N-gap solutions with
the restriction of a fixed period in x relaxed, the convenient starting point is
not (3.138) but rather the algebraic system of equations (3.150). We im-
mediately find that in order for nontrivial solutions V to exist,

2N
y?=det Q=h2+ef=-[] (A~ (3.158)
0
Equation (3.158), the characteristic polynomial of Q, is an algebraic curve in

(y, A) and defines a hyperelliptic Riemann surface R of genus N. The determin-
ant of Q is a polynomial of order (2N+1) in A; it is easy to check that its
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leading coefficient is —1, and we assume that the roots A;, j=0,...,2N are
real. The Riemann surface R plays the same role for the finite gap solutions as
the spectrum does for the initial value problem. First and foremost, it is a

constant of the motion, independent of x and t,, t3,.... To see this, cross-
differentiate (3.150) with any of the time flows and find
Q.. =[Q*"", Q] (3.159)
with solution
Q=VQ,V, (3.160)
where Q, i1s independent of x and t,, 15, ts,.... Hence the characteristic
polynomial of Q is indeed a constant of the motion. As a consequence, the
roots Ag, Aq,..., Ay of det QO are also constants of the motion and for g

periodic in x are the simple spectrum of (3.1) corresponding to the periodic
and antiperiodic eigenfunctions.

Next, we introduce new variables p;, j=1, ..., N which are the (real) roots
of f(A), the (2,1) element in Q (see (3.150)). (In our example (3.144), N=1,
f=—A+4qg/2—c, and there is only one w which is equal to g/2—c¢.) In order to
discover some of their properties, we have to do some calculations. If we
translate (3.159) into three equations for h,, e, fi (recall

O(2k~1:=(hk €y ) )

fk —h'k
and the polynomials h, e, f, we obtain
h, = qf te,
e, +2ile =~2hq, (3.161)
fx —2i{f = —2h,
and three equations for h,, e, f,, the first of which is
h,, ,=ef—fie, (3.162)
the only one we need. Now a little calculation on (3.161) shows that
y2=h*tef=—3ff. +ifi - (A +q)f° (3.163)
and, since f is always real, y*(u;)=3f2(A = w;)>0. Hence the roots of f lie
between )‘Zk—19 AZk: k= 1, e ay N and we list them so that Azk—léuk é/\zk,
k=1,...,N.
N
f) =TT —w). (3.164)
1

Now from (3.162), (3.163), (3.164), we find, on comparing the coefficient of A?",
that

2N N
q =—Z'\;+2Z (P2 (3.165)
0 1
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Check this for N=1: p =¢qg/2—c, and we have g(x)=—A;—A;—A,+q(x)—2c;
but we have seen that the sum of the roots is —2c¢, and therefore (3.165) holds.

The p; are confined to the intervals (Ay_;, Ay;) and they will move with x,
ts, ..., tney. We now seek this dependence. Since h®+ ef is constant,

2hh,,  t+ef, +te,  f=0. (3.166)
At A=y, using (3.162), (3.166) becomes
2h (X (—efic (1)) +ef,, (1) =0.
But, recalling (3.164),

fﬁk 1(”1 "LJ tzu 1l-I (uj "Ll)
I#tj

h(u, (H N l—‘u ) ,2-

and, from (3.158),

Therefore
o A=)
i k1 :FZ f (p’)s k = 1: LR | —M (3-167)
Ha Hw, (=)
and we have the t,=x,..., t,n—; dependence of w’s. In particular, for k=1
(tl = x):

AT A )Y

L= 3.168
Fix = Hh“] (“’] p"l) ( )
For k =2, the KdV flow,
B A =)' (q )
L =T =— 3.169
Fie Hl’#i (Uvj —H) \2 H ( )

and g should be expressed in terms of A’s and p’s by (3.165).

The Abel map from the Riemann surface to the Jacobi variety. At first sight,
these equations (3.167) look awful. Nevertheless, we are about to find that,
after some manipulations, a little order and structure begins to appear. To
begin, let me remind you that with u,,,, set equal to one,

f=uwfitusfote -+ uon_sfn+ st (3.170)
where

fio = AL+ AR 2LY (= 1)+ - -+ AOL*Y(=1). (3.171)

In (3.171), L is the operator (3.12), and L°—1)=-1 L(-1)=qg/2. Note that
fo=q/2—A. How do we see this? Note that if we write the “t” equations (3.3)

in System form with U= 1,
( 21) ( )( 1)
U k hk (3

tax—1



SOLITON EQUATION FAMILIES AND SOLUTION METHODS 107

then f, = B®=BoA* '+-- -+ B,_;, where the B, are defined in (3.13). Also,
since

N
f=-ITa—-w, (3.172)
i=1
we find, on comparing powers of A,

S, =L(1)+uzny 1 L(-1),
_S?_ = Lz("" 1) + uzN_lLl(_ 1) + uzN_3L0(_’ 1), (3. 173)

(~ 1)N—ISN = I—N(““ 1) + u2N-—1LN—1(_ D+---+ ulLO(—l),

where the {S,}}’; are the sums of symmetric products of the roots

S1=X ko 2= X fudls ---r SNTH1CC e (3.174)
k=1
Finally, it is convenient to define the sequence {A,}7 by the relation
Usn--1 , Uan-3 N U1 )_1 A,
1- + 4+ (1) =) =2, —. 3.175
( A 22 DR o ( )

The first few are
Aog=1, Ai=un-1, Ax=—Upnat UIN-1,
As=Uyn—s— 2Usn—1Uan—3F USN_1- (3.176)
With these definitions, we can invert (3.173) to give
L-1)=8+A,,
—~LA(-1D)=8,+A,8,+ A,,
L3*(—1)=S;+ A,S,+ A,S, + A,

DN TLN D) = Syt ASyg b+ A (3.177)

Note that the first equation in this set is (3.165): 3A; =3uynv. = —Yo" A; since
the A, are the roots of h’>+ef.
Now let us examine (3.167). Write the equation as

du; __ 2fi(w)
y) Tl (ot — )

We coordinatize a point on the hyperelliptic Riemann surface R

dty . (3.178)

2N
v =[Ta.-»

by the ordered pair (y, A). Next, form the N linearly independent holomorphic
differentials
ASdA

ws(A) = )

s=0,...,N—1, (3.179)
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over R. From (3.178) we have

= iw (U'; Z u’l d“’l z U-';Zl e 1dt?—k 1
i i=

=1 Y(Mj)
_22 dtzk 12 l-l']fk(“'])
11 he;(Pq Ml)
s k=17 Of_ k—21 f_ k17
2% a3 LD L) - L)
k=1 i=1 Htaej(ll-j—m)

s=0,...,N—1. (3.180)
We have a remarkable result: the quantities

N s
I-Lffk(l"j) (
3.181)
j=1l-[l$j (Mj_m)
are independent of x, #3,...,%;_1,-..- Therefore (3.180) can be simply

integrated; i.e., | dd = o, § Atz y = toi 1.
In order to prove this, we need the result that

N

i
i=1 Hlaﬁi (f-"j — ba)

and the remaining members of the sequence Ly, Ly.q,..-,Iaon-1 satisfy the
recurrence relations,

L= Siln-1,
Ins1=S1In—S2In_1,
Insa=SiInya— Soln + Sy,

L= =8 g for s=N-1 (3.182)

12-N—1 =8Siln2—Salana++ - -+ ()Y TIS . (3.183)

I leave the proof of this as an exercise to the reader. (3.182) is proved by
considering

1 j z8dz
e Ic H{i1(Z_M)’

where C is the circle at infinity. (3.183) is proved by subtracting appropriate
multiples of zP [ (z— ), p=0, . .., r from the numerator z¥*" so as to make
the integral converge as |z| — .

It is easiest to show (3.181) by calculating the first few, For k=1,

N s
Mj(“l)
=—8,n—1 from (3.128);
i=1 Hlaej (ﬂ'j"‘ﬂ-l) N1 { )
for k=2, 0 =N-3
(—1)+L(-1 o SEAT
_Z “’H( z { ))"” {1, s=N-2, (3.184)
i=1 I#j “’1 M Al S=N'— 1’
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by using (3.183), (3.182) and the first equation in (3.177). For k = 3, replacing
L(-1), L¥—1) from (3.177).

0, s=N-4,
NSt DY+ LD ST+ L2A—1Dus -1, =N-—-3,
§ s LD, CDpj_ ) -1 s (3.185)
j=1 Htaﬁi(ﬂ'i_ﬁq) As, s=N-2,

__.Az’ S=N—1,

because —Iy,1+8,In—8,Iy , and Iy— S, are both zero from (3.183). The
pattern is now clear, and by induction it is readily shown that the matrix (rows
s=0,...,N=1, columns k=1,...,N)

0 0 I |
s 0 0 A
_ - H’jfk(“'j) _ 1
Msk - - _AZ
j=t Ll (= ) _1 .
_1 Al ANA-I

(3.186)

Return to (3.180) and integrate, for it is now a separable equation. The
right-hand sides integrate to

2t2k‘1Mk) S=0,...,N_‘1, kzl,...,N, tlzx.

The left-hand sides, namely Y., o,(y;), we integrate from a fixed point on the
Riemann surface po(y(wo), o) to pi(v(ry), 1):

N n; N
(bs(pl’ veey PN)Z Z I ws(“’]) =2 Z t2k—1Msk' (3.187)
i=1 “py k=1
The phases ¢,(p;, - - ., pn) are simply linear combinations of x, ts,. .., tx-—1-

But wait! The integrals on the left-hand side of (3.187) are not uniquely
defined because the integration paths are not specified. Consider Fig. 6, with
the contours {a,}}, {b;}. The a, contour surrounds the branch cut (A,,_y, A,,)
whereas the b, path comes from —cc to the branch cut (A,,..;, A,,) on one sheet
and returns on the other. Therefore the left-hand sides are only defined up to

FIG. 6. The {q;}, {b;} contours in the X -plane.
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the sum of

In

k

N
ws(u‘]') + Z mkjbk ws (u'])-

It turns out to be convenient to normalize the closed integrals about the a;
cycles as follows: Let

N-—1

U= Y Cuo,
0
and choose C,,, so that

j U,=8.
a,

Now, let us define the phases 6, by

6r'(pla LRI ] pN) = Z jpi Ur(“’])

i=1 0
and, from (3.187) we find

N—1
6,= Y Cub, C=(C,),
)

N
=2 Y, tu_1Na (3.188)
k=1

where N is the product CM. (3.188) can be written §=2Nt where 8, t are
0i,...,0y and t4,. .., tn_q Tespectively.

Now that we have integrated the equations, it remains for us to determine
the sums of symmetric products of the u’s which are the quantities q,
Lg, ..., LNq of interest. The question then is, given

91,92:---’91\7

can we determine p,, p,, - - - , P and in particular
N 2N
— 1
Z iy *%Q“'EZ A
1 L))
In order to answer this question we have to look at the nature of the map,

called the Abel map,
P15 Pn) (01,04, ..., 64) (3.189)

and its inverse. Since any permutation of 1, - - -, N on the left of (3.189) gives
the same set of 6’s, the map is from RXR X- - -X R/Py, namely N copies of
the Riemann surface, modulo the permutation group on N symbols Py, into
C", N-dimensional complex space. Since the right-hand side depends on the
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paths of integration we can add to 6, any linear combination }[_; (nf, U, +
m;f;. U,) when m, n; are integers. We will call

j U =B., (3.190)
b;

and state without proof that B, is symmetric and that its imaginary part 18
positive definite [85]. Recall that we have normalized |, U, = é,. Therefore the
resulting point in C" is determined only up to an integral linear combination
of the 2N vectors

1 0 By, Bn
Bi,
0 1 By Bnn

Those 2N vectors define a lattice A in CV = R?", For example, if N=1, the
complex plane is covered by the period parallelogram familiar from elliptic
functions. Thus p,y,...,pny is determined by where in the N-dimensional
period parallelogram the point 6., ..., 8y sits and is unchanged if the point
8, ..., 6y is moved 10 a congruent point in another period parallelogram.
Hence the symmetric products of the p’s are periodic functions of the 8’s and it
is convenient to think of identifying opposite edges of the period parallelo-
gram. Now one sees that the point 0, . . ., 65 really lives on an N-torus denoted
C™/A called the Jacobi variety of the curve (3.148).

The finite-gap solution for the KdV family is therefore equivalent to a linear
flow on the Jacobi variety. The solution q(x, £5, . ..) can be expressed in terms
of the Riemann © function

2

d
q(x, t3,...)=25;§1n®(91, 92,...,9N)+C (3.191)

where

[~}

N N
O6,,...,04)= Z exp ( Z 2riv 0y i Z B,q-vkv,-), (3.192)
vy EZ. k=1 k.j=1
where Z is the set of all integers and ¢ is a complicated constant [85]. Notice
the close correspondence between the finite-gap solution and the N-soliton
solution. Note also that the +-function, defined by q=2(3%*/0x?) 1n v, which I
have briefly talked about and which will be a most important function for the
rest of these lectures is the @-function times e“*** when q is a finite gap
potential.






CHAPTER 4

The t-Function, the Hirota Method, the
Painlevé Property and Bicklund
Transformations for the Korteweg—deVries
Family of Soliton Equations

4a. Introduction. Up to this point, it has been our point of view that the
class of problems we are attempting to solve are initial-boundary value
problems. Namely, we think of x in all the equations as a space coordinate and
associate with it boundary conditions such as periodicity or decay at infinity.
This point of view emphasizes, and indeed makes necessary, considerations of
the analytic nature of the functions we are dealing with. For instance, we found
that if q(x, 0) decays sufficiently rapidly as x — +oo and obeys a certain integral
condition, the scattering data have certain holomorphic properties. But in
reality, the equations we are studying are magic because of their local prop-
eties; for example, the fact that the KdV equation has multisoliton and
multirational solutions has nothing to do with boundary conditions but is
simply a consequence of the very special balance which occurs between the
various terms in the equation. Disturbing this balance by adding a q or gqq,.
term destroys the magic properties. Disturbing the boundary condition at
infinity may make the equation more difficult to solve as an initial-boundary
value problem but does not destroy its locally integrable character.

Accordingly, in this chapter, we seek to focus on those methods which
depend on local rather than global properties of the equations. The most
important character in the list of dramatis personae is the 7-function who is
now ready to claim his rightful place in the main floodlight, center stage. He is
ubiquitous and pops up in just about every scene, often independent of our
original intentions. Somehow, he seems to know just how important he is.

4b. The ~-function. This multifaceted function was first discovercd by
Hirota as a means of generating soliton solutions and we will discuss that
method in the next section. However, his true significance and central role in
soliton theory was not appreciated until the work of the group consisting of M.
Sato, Miwa, Jimbo, Kashiwara, Date, Y. Sato [39] at Kyoto University, and 1
think it is fair to say that even at this time, the import of this function has yet to
be fully understood. Like the devil himself, he appears at many times in many
disguises. Sometimes he is just a simple polynomial (the rational solutions of
the KdV equation), sometimes he is a finite sum of exponentials (the multisoli-
ton solution). Other times he gets more complicated ; he can be a Riemann @
function (times a harmless factor) and a correlation function. Sounds intriguing,
doesn’t he?

113



114 CHAPTER 4

We will get to know him first as a potential function from whose second
logarithmic derivatives all conserved densities and fluxes can be calculated.
Consider the family of KdV flows

0 0
=—L"q=2-—B, ;. '
Qs = 52 L°4=272 B (4.1)
For convenience, we introduce
w = I q dx, (4.2)
whence (4.1) is
w, . .=L"q=2B,,,. (4.3)

Hence the function w(x, t5, ...) may be considered as a potential function for
the infinite sequence {L."q = 2B, ,.};. Now, it is a known fact that the deriva-
tives of all these functions with respect to the various times namely,
(0/0t,,,.1)L"g can be written as the x or t, derivative of local quantities.
Therefore, it is natural to use the potential function 7(t,, t5, . . .) defined by

)
w=2—1In ‘T(tl, I3, s, . . .) (4.4)
oty

instead of w itself. In this way, you seec,

3 d “InTt

n

e ——

at2m+1 atl at2m+1 6t2“+1

and so all the time derivatives of the sequence {I."q} are given by an equation in
conservation form with respect to the special variable x. Notice, however, that
the expression for the flux corresponding to the rate of change of the conserved
density L"g in the (KdV); flow is most conveniently given as a derivative with
respect to the time t,,,,; corresponding to the (n+1)st flow in the KdV
hierarchy. This emphasizes the fact that, when one seeks solutions for an
integrable equation, it is good to understand that one is really secking common
solutions for the whole hierarchy of flows in its family.

For the first time in the literature, I will give you a formula for the flux tensor

8’ln~
F =2—. 4.5
I Aot Otan e 4.5)
Note, in particular, that
6> In
Lg=2—". (4.6)
atl 6t2"+1

In order to derive this formula, we start by writing a general equation for the
B,’s. Since
Ut2n+1 = %BSC“)U - B(")Ux’ (4'7a)

V..., =3BIv—B™y,, (4.7b)
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where
B,
B(n) _ I\“ ,

Z =

it 1s not hard to show that
B — B +B™B{-BIB™=0. (4.8)

Now define

B(n)

B =1lim

nseo A"
and divide (4.8) by A" and take the limit A — oo, thinking of |A|> 1. Then
B, =B™B-B™B.. (4.9)

By writing (4.7) in system form for the vector V=(v,,v,)", v,=v, v;=
— 0y, + ilv,, We have (A ={?)
= QUr+by, (4.10a)

‘2 +1
where

(n) (n)

2

Q@D = (i B — qB("))E-i- B™WF (4. 10b)

G o

-1 @.11)

H + (1 B —
and H, E, F are the basis

bk (o

for sl(2, C). It is easy to show that, with

2n+1)

equation (4.9) takes the Lax form with the usual matrix commutator

Q.,..=[Q*", Q] (4.12)
By equating the A7 ' components of (4.9) we find
B,
mil= BOme+n+1+ Tt +anBm+1__B0Bm+n*1x_ e —Ban+1x-
M40
(4.13)

I leave it as an exercise, admittedly a difficult one, to show that the right-hand
side can be written as half the x derivative of

1 2m+1 Zn+1
Forv12nt1= 5 Tr{ z Qs 11-5Q2p 4145 + z Sozm+1+502n+1—s}, (4.14)
s=0 s=0

where Tr(Q.Q)) is the trace of the matrix product and the Q; are defined by
(4.11). It is clear that the expression (4.14) is symmetric under interchange
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of m and n. The simple rearrangement of indices gives us the conservation law
for every flux tensor,

0 0 o
2m+12n+1 " 2n41,2k+1 " Fori1.2m41-
Olo 41 Olym 1 0341
Knowing 7 as a function of the times x = t;, t3, ts, 3,41, - - - Means we know

everything about solutions of every member of the KdV family. In a sense,
then, the 7 function acts as a potential from which all components and all
gradients with respect to all the times of the infinite dimensional vector B can
be derived. It also has an important second interpretation which we will discuss
when we get to the topic of Backlund transformations. In order to prepare the
way, however, the following result which relates the eigenfunctions v(x, t5,...)
to 7 is very useful.

The result I now give is formal because it uses (3.29a), the asymptotic
expansion for v(x, ts,...,{) near {=cc. (Depending on the nature of the
essential singularity at o, the formal expansion (3.29a) may not be uniformly
valid in all neighborhoods of ¢ =; however, for special classes of solutions,
including the multisoliton solutions, the formal expansion (3.29a) is the Laur-
ent expansion at { =«.) The dependency of the asymptotic expansion on the
times ts, 5, . .. is taken care of by changing the exponent —iZx in (3.29) to
—i Yo {** 'y .q. We find

o(x, t5 - )~exp (i 2 42"+‘t2,,+1)e“’ (4.152)
where
- R
&b, ~ —_ 4.15b
2 Gy (4.1b)

(For multisoliton solutions, (4.15b) holds in all sectors of ¢ =« and therefore is
a Laurent expansion. One can then replace the asymptotic symbol in (4.15)
with an equal sign.) Let us write the integrals of the first three terms of (4.15b)
in terms of the 7 function:

fgqdx 1 J’ ”
~ Qg — + + + -

19 1 &?In~ 1 J‘ 1
=P,———In7— + +3g%) dx + +ees

Qoo BT a2 e Toaip )@ I B s

1 8 1 ®*Int 1 8ln+ 1 3ln7t

:q) ———ln _ + —_ PR .
© it ety Y ot 6i o3 3il® oty (4.16)

where we have used the fact that

In~
aty Ot;

g +3q°=—4 j q, dx =—8
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Continuing this process (see Flaschka [86] for a proof) gives

1
(I)_q)o"‘ In T(t2k+1 - i(2k + 1)c2k+1)_lﬂ T(t2k+1)-
Hence
t —1/iQk + 1)¢* !
vk b, - .. §)~exp (lz €2k+lt2k+1) i T( 2k+1 Ji( )74 ) ]
) (tag +1)
4.17)
We introduce the operator
-1 0 )
— . 2k +1 . 4.18
X(@)=exp (' L¢ tz"“) exp (): kT D e, ) @18

Operators of this type are closely related to the objects called vertex operators
in the literature [101], [102]. We now see that

v(x, ts, . . . ;§)~;1-X(§) - T (4.18b)

gives us a (formal) relation between the function which generates solutions of
the KAV family and the eigenfunctions v(x, ts, . .. ; £). This particular formula
will be used when we introduce Bicklund transformations in Section 4f.

4c. Symmetries, conservation laws and constants of the motion. Consider a
particle of unit mass with coordinate vector (g, ¢>) and momentum vector
(p1, p2) constrained to move in a plane under the influence of a central
conservative force field. The Hamiltonian for this system is

H(ay, 42, 1, p2) =37+ p2)+ V(ai+43) (4.19)
and the motion is given by
z'=JVH (4.20)

where z =(q,, g2, P1, P2), V is the gradient with respect to these four variables
and J=(_Y {) where I is the identity matrix (¢ 9).

Now it is intuitively obvious that we could have chosen to describe the
motion from any reference frame which is a pure planar rotation through an
angle 6 of the coordinates z,

M 0 cos® sinf
R=(o w) Moo o)
0 M —sinf cos 6
and 6, which coordinatizes the amount of rotation, is arbitrary. Since both the
Hamiltonian H and the equations of motion are invariant under the action of

the group of rotations (this means that H'(z'(z))= H(z) and z'=J V'H'), the
infinitesimal change 0z'/86, evaluated at the identity 6 =0, satisfies the

where



118 CHAPTER 4

linearized version of equation (4.20). The reader might check this for himself.
For 6 small, g1 =g+ 0q,, 9/dp1=0/dp,+6(8/dp,) and then q; =0H'/dop; be-
comes (g1 +6q3) = ((8/8py) + 6(8/op.)H (remember H'(z")= H(z)), which is in-
deed true.

One can see, therefore, that the property that the Hamiltonian and equations
of motion are invariant under the action of the rotation group can be expressed
by the fact that the partial derivative of the solution 9z/90 |¢_,, evaluated at the
identity, solves the linearized equations of the motion. It is emphasized that the
linearization can take place about any solution of the original equations (4.20).

We call the group action under which the Hamiltonian and the equations of
motion are unchanged a symmetry of the system. As we have remarked, a
necessary and sufficient condition for a continuous group action to be a
symmetry is that its infinitesimal action, measured here by o(z) =092/80 |¢_o, is
a solution of the lipearized equations of motion. We shall also refer to the
function o(z) itself as a symmetry.

Symmetries are very useful. In Hamiltonian systems, each symmetry is
associated with a conpstant of the motion (Noether’s theorem) through which the
dimension of the system can be reduced by two. In the example quoted, the
constant of the motion associated with the rotation group is the angular
momentum. By a suitable choice of coordinates, the angle variable correspond-
ing to the angular momentum (one of the two action variables for (4.19), the
other is H itself), can also be removed (it becomes a cyclic or ignorable
coordinate in the language of Hamilton). Therefore, by fixing the angular
momentum h, one obtains a reduced equation of dimension two. Indeed, in this
case, using the polar coordinate r = (g3 +g3)"?, the equation is

from which the orbital motion of the particle is readily inferred by a phase
plane analysis and, for certain potentials V, the motion r(t) can be explicitly
computed in terms of known functions.

The idea that a symmetry can be used to reduce the dimension of the
mechanical system has been known for a long time [87]. In most of the classical
examples, however, the symmetries are fairly obvious and have simple geomet-
ric interpretations (the motion is invariant under translation, rotation). So, too,
are the corresponding conservation laws which have a correspondingly simple
physical interpretation like conservation of linear and angular momentum. In
soliton equations, however, things are not that simple. I have already pointed
out to you that after the first couple of conservation laws for the KdV equation
(which correspond to the conservation of mass (or momentum) and energy),
the infinite number which follow have no physical interpretation. Neither do
the symmetries. For this reason, they are called hidden (connotation: nonobvi-
ous) symmetries. We will see at the beginning of Chapter 5 that they are
associated with the action of certain infinite dimensional Lie groups. In the case
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of the KAV family, the symmetry group is the Kac-Moody group correspond-
ing to the graded Lie algebra sl(2, C), the loop algebra of sI(2, C). We will also
talk later in Chapter 5 about the method of reduction in these cases and will
show how, using the Marsden, Weinstein [88] generalization of the classical
reduction method, the equation families given by (3.9) and (3.49) are reduc-
tions of much simpler flows on a higher dimensional manifold.

Let me now define and identify the symmetries and corresponding conserva-~
tion laws for the KdV family. Motivated by the earlier example, we say the
function v(m), meaning v(y, u,, W, . . .) is a symmetry of the scalar equation

u, = Qu) (4.21)

if u+ gv(u) also satisfies (4.21) for all solutions of u of (4.21) for an arbitrarily
small £. This means that v(u) has to satisfy the linearized version of (4.21),
which is

v, = O'(w[vl (4.22)

The right-hand side of (4.22) means the directional (Fréchet) derivative of Q at
the point w in the direction v i.e. Q,v+Q, v, + - -+ and is defined as

lim % (Q(u+ ev@m))— Qu)).

e—0

Note that the left-hand side of (4.22) can also be written v’'(w)[Q] since
U =0+, U+ =0,Q+0, Q- -
We have many candidates for symmetries for the typical member of the KAV
family (3.9) 5
dy,. =2NB; ., = Py L¥q (4.23)

because we know all the flows (4.23) commute and therefore g can be
considered a function of the infinite number of independent variables x =t¢,,
ts, . -« by, - - - - Thus we can differentiate (4.23) with respect to t,;,, and find
that dq/ot,;., satisfies the linearized equation. Hence the symmetries of each
and every member of the KdV family are o, =2ag/ot,;., j=0,1,2,....
Equation (4.23) can also be integrated once to give

ow I

Oy 1

Associated with each symmetry o, ts the local conservation law

d ow 9 InTt

312k+] at21'+1 atl at2k+13t2j+1

and the constants of the motion (when x is considered as the special variable)
are o
]‘ ow

dx = I Ligdx.
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The reader can check that these are the constants of the motion; j=0 is total
mass (or momentum), j=1 is energy and j=2 is proportional to the first
hidden symmetry H,, the Hamiltonian which generates the KdV equation. (It
should be pointed out, however, that H; is a very useful functional in proving
the stability of solitary waves (see [126]). It was called the moment of stability
by Boussinesq.)

There are other symmetries as well. These are connected with Backlund
transformations which I will discuss in Section 4f. For the moment, however,
let me introduce the idea as follows. Let q(x, ¢4, 1, - . . ; 1, X,) be a one-soliton
solution of the KdV family (3.9), n=0,1,2,3,...,

q = 2n?sech’ 'ﬂ(x —Xotht Z (—1)*n Zkt2k+1) -
1

Since it i1s a solution for all values of the amplitude n and position x,
parameters, dgfon and 9q/dx, are solutions of the linearized KdV family
equations and therefore also are symmetries. In particular, they are solutions of
the equations linearized about the identity (either =0 or xy=) state. A
Backlund transformation is a transformation which builds new and richer (in
the sense that the transformation can add components to the scattering data
which were not there before) solutions from old solutions of the KAV family.
They can also be built in a continuous way, starting with the identity. This
means, for example, that we can add a solution with arbitrarily small values of
the amplitude parameter m or at arbitrarily large distances so that the
parameter b =exp (2nx,) is as small as we wish.

Therefore, in addition to the symmetries associated with the flows (the
translation of the time coordinates), there are continuous Symmetries as-
sociated with transformations which take one solution type to another in a
continuous way. In the last section of this chapter, Section 4g, I will indicate
how both sets of symmetries combine to form the Kac-Moody algebra as-
sociated with the loop algebra of si(2, C).

4d. The Hirota story [34), [89]). You will recall that, in Chapter 1, I briefly
mentioned the ingenious method of Hirota for obtaining multisoliton for the
KdV family. Motivated both by the form which the N-soliton solution takes
and by similar transformations for Burgers’ equation, Hirota associated with
the solution q(x, t;) of the KdV equation a function 7(x, t;) defined as follows:

2

d
q(x, t;)=2 P In~. (4.24)

As we have seen in Section 4a, this choice is a very natural one in the sense
that the entire flux tensor for the KdV family can be written in terms of one
scalar function.

We will now develop the Hirota formalism. It is convenient to define

q=w, (4.25)
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whereupon the KdV equation

G +64g, + G =0 (4.26)
after one integration becomes

w,+3wi+w,, =0; (4.27)

the constant of integration is taken to be zero because this is a property of the
class of solutions we are interested in. (In order to avoid fractional coefficients
in the calculations that follow, I have rescaled the times of (3.9) t,,., —
2%"t,,+1.) Now calculate the following quantities:

T
1,., _ 'x
2W=—,
T
2 2
lq_TTxx_Tx__Txx Tx
24— 3 T T T T2
’1'2 T T
3 3
lq TXIX — TXTX_X + 2 I_I_
28x 3
1'2 T
2 2 4
lq . Txxxx_47x7xxx_ 37)0: 127x7xx__ 6 1)_5
24xx T 2 2 3 4
T T T T T
72 727 74
2 xX X fxx x
%q =6 _2_12 3 +6—z_
T T T

Observe that if one adds the last two quantities, which is exactly the combina-
tion of linear dispersion term and quadratic nonlinear term as appears in
(4.27), all the ratios cubic and higher in 7 and its derivatives vanish and we
find,

me TxTxxx Tix

1 2y 1 3.2
i(wxxx + 3wx) - qux +2q - 2 2 -
T T T

Hence the KdV equation becomes in the new variable 7,
TTe — ToTe + TToex — AT, Toxx + 372, = 0. (4.28)

The first interesting feature this equation has is that it is quadratic in 7. Observe
that 7=1 is a solution which corresponds to a zero g field. Next, let

T=1+e% (4.29)

with 0(x, t) = kx + wt + 0,, linear in x and t. The form (4.29) is an exact solution
provided that =—k>; the coefficient of the second harmonic terms e**
automatically vanishes. Let us be bolder and try

r=1+e%+e%

where 6, =kx—k}t+86,. This is not a solution because even though the
coefficients e*®* and 2% vanish, the coefficient of e®*®: does not. Compensate
for this by adding a constant times this term to the ansatz with the constant to
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be chosen so as to eliminate the coefficient of €%z which now comes from two
sources, the quadratic interactions of ¢ and e¢® and 1 and e®*%. Miraculously,
the coefficients of e?%*% ¢%*2¢ 26,26, vanish. We will sce why shortly.

> e 1% and e
Therefore, the form
7(x, 1)=1+e%+e%+ % *%:" 20 (4.30)

provides an exact solution for (4.26) provided

k4 kz)
A 4.
¢ (k1+k2 (4.31)

In Section 3d, we already discussed the nature of the solutions (4.29) and
(4.30) and interpreted A,,(k,, k,) as the phase shift function. There k; =—2x,.
In particular, the solution (4.30) can be thought of as a nonlinear superposition
of two solitons, with amplitudes 3k? and k3. If k2> k3, then as ¢ traverses
from —oo to +oo, pulse one overtakes, interacts with and passes pulse two in a
manner discussed already in Chapter 3. After the interaction, the larger pulse
is ahead by an amount —A1,/|k,| of where it would have been had it travelled
unimpeded, and the smaller one an amount —A,,/|k,| behind. Remember
A,,<0,

Once an equation has been put in quadratic form, there is always a
two-soliton solution. However, that is not the case for a three-soliton solution
for which

T“1+Z eh+ ) ebtOtAng gfitoat Ot AntAy Ay, (4.32)
1=j<k=3
Here in order that the coefficient of e®*%*% vanish, the coefficients in the

original quadratic equation (4.28) have to be just right. We also observe that
the coefficient of e%"%"% js the exponential of the sum of the two-soliton
interaction phase shift function. This property holds in general and the N-phase
soliton solution for KdV is

Z exp (Z p;0; + Z Aijuiﬂj) . (4.33)
#;=0,1 1=i<j=n
Consider k3 >k3> - - - > k2. As the time t traverses from — to +oo, the largest

soliton will undergo a total phase shift which consists of the sum of the phase
shifts it experiences with each of the other solitons it passes.

I will show you how to construct these solutions in a moment. But first let me
tell you that the N-soliton solution for each of the members in the KdV family
has exactly the same form. The only change is

B(x, tar 15, .- )= 6= L (~1)K{" Mty (4.34)
n=0
(I want to emphasize again that the t,, ., in (4.34) are equal to 272" times the
t,n+1 defined in §3b. This change is made so as to remove the factors 1, 272,
274, ...,27™ in (3.14), (3.15), (3.16), (3.22) which would result in integral
factors in the analogous equation to (4.28) for the (KdV),,., flow.)
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Now the remarkable thing is that not only is (4.33), with 6, defined by (4.34),
the N-soliton solution for all the flows in the KdV family, but the
phase-shift function A;(k;, k,-) and the resulting phase shifts themselves,

1 .

Ng>. | kll Ay * L g Ay  i=1,...,N, (4.35)
are the same for every equation in the family. This is less remarkable when one
understands that it is a direct consequence of the commutativity of the flows
and the fact that g{(x, 3, t5, t;,...) is a common solution. To see this imagine
that we begin with a two-soliton shape g(x, 0,0, .. .) of the KdV family. Now
run the evolution two ways. First, insert the given shape as an initial condition
for (KdV), and allow it to run for a time t; sufficient for the interaction to have
taken place. Then take the solution g(x, t;, 0, . . .) as initial condition and run it
for a sufficiently long time t; in the (KdV), ﬂow. Since the velocity for (KdV),
is also positive, no further interaction takes place. Now reverse the sequence.
The resulting shape q(x, t3,0,t;,0,...) must be the same and therefore the
phase shifts associated with the t, and t; flows must also be.

We will use this property frequently in what follows, but first I want to
introduce to you a new calculus invented by Hirota and show you how to
construct N-soliton solutions. Hirota noted that the terms in (4.28) were very
like the Leibnitz formulae for derivatives of products. Except for signs, (4.28)
looks somewhat like

T 2 T
ox dt ax

He invented a new operator D, defined on ordered pairs of functions o(x),
7(x) as follows:

o
Do 1m=lim —o{x+e)r(x — €)= 0,7 0T, (4.36)
e—0 0L

This definition can be extended to functions o(x,, x,,...), 7(xy, X, ...} of
infinitely many variables and to higher powers of the operator:

o o o
DDz - Do - 7
(I

ﬁ lim —0(x,+s )7 (x, —£,). (4.37)

r=1 g->0 8

For example,
DDy 17=2rr,—7,7.),
Dt 7= 2(TTxe — T + 3720
In this notation, the KdV equation (4.28) takes on a v-ery compact form,
(DD, +DH7r-7=0. (4.38)
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The calculations of the multisoliton solutions are also made easier. To see this,
we look at how the operators D,, D, act on exponentials. It is easy to show that
Drek - ek = (k,— k,)meFitkIx, (4.39)

Indeed, for a general polynomial
P(D,, D)e*> "t - ekt = P, — ks, wq— wy)e®rtkdx+ecrad (4 40)

In general, if we take

6= 2, (— 1)k ps, (4.41)
0
then
PD,,...,D, )% e%=Plk;—kj...,(~1y (k¥ —kI*h),...)e%",
(4.42)

268.+0, 91+262,

From these formulae, we can see why the coefficients of e2%, e , €
obtained when looking for two-soliton solutions, automatically vanish. First, we
note that for the class of equations we shall be dealing with,

P(_Dtla —Dt3’ .- -) = P(Dtls Dt3s .- -)s (4-43)
P(0,0,...)=0, (4.44)

and
PK)=P(k, —k* k>, ..)=0. (4.45)

The last equation (4.45) expresses the fact that the dispersion relation for the
soliton solution

T=1+¢e° 0=kx+wsty+wsts+ .-

is satisfied by w,,,; =(—1)k?*!. Furthermore, it gives a one-parameter family
of surfaces on which the algebraic functions

X1X3+ X3,
or in general,
P(xy, x3,...),

which are associated in an obvious way with the Hirota equations (4.38), vanish.
Let us calculate the phase shift function A,,(k,, k) for the general equation

PMD,,D,,..)r =0 (4.46)
which has Hirota form. P is polynomial in its arguments. Take
T(tl, t3s tSa .. ') = 1 + eel + eez+ eﬂ]+62+Au (4-47)

with 6; =Y (—=1)k?*t,,,,. The coefficients of e°, e**, ¢* and €>**?% are P(0)
and therefore zero. The coefficient of a term such as e?**%, arising from the
product e%**

2 with €% is

P(kl+k2“ k2’ ._k—;’..‘_ kg_kg: .- -) =P(k15 ——k?’ .- -)
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which is also zero. The only surviving term is e¢® "% which has the coefficient
Pk, —k;)+e?2P(k, +k,)
where we define
P(k, ~ ko) = P(k,— kp, ~ki+kz, ..., (1) (k™' —k3™),..). (4.48)
Hence, in general

_P(k1_k2)
Pk, +k;)

A

12 =

(4.49)

Since for the (KdV), equation (4.38), P(x,, X1, Xs, . . .) is X, X3+ x1, we have, for
that case,
ki—k )2
A 1 2
= {——=] 4.50

¢ (kl +k, (4.50)
Further, we have the powerful result that, since the phase shift of each member
of the KdV family is the same, the members of that family are characterized by
all polynomials P(D,, D,,...) which have the property

(ky— k3)* Pk, + ko) + (ky + ko) Pk, — ko) =0, (4.51)

in addition to satisfying (4.43)—(4.45).

In order to put this statement in perspective, let me review what we have
done. We found that, by introducing the transformation (4.24), the KdV
equation could be written in Hirota form

P(D,,D,,..)v - 7=0 (4.52)

with P(x,. X5, ...)=x,x;+x]. Further, I stated that it possesses an N-soliton
solution, for arbitrary N. Questions which naturally arise are:

(i) Does every even polynomial P(x,, x5, . ..) give rise to N-soliton solutions
for N>27 We know from the last calculation that for any even P, one can
always obtain a two-soliton solution. But how about N>27 The answer is
“no”’. The polynomial P will have to satisfy severe constraints.

(ii) Can one conveniently characterize these constraints and thereby write
down all polynomials P(x,, x5,...) which admit N-soliton solutions? We will
call these Hirota polynomials. The answer is a qualified “yes”. We can ask a
more restricted question.

(iii) Given polynomial P, say x;x;+xi, can we (a) determine if it has
N-soliton solutions for arbitrary N >2, (b) find, in Hirota form, all the other
members of its family and (¢) find all the other Hirota polynomials compatible
with the given one and determine how many of them there are? The answers
seem to be YES, YES and YES. 1 will show you how to go about the proof but
I have not yet made it rigorous or complete. 1 should explain further what
question (c) means. If 7 is such that it satisfies

(D,]D,3+Dfl)'r =0,
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then does it satisfy another equation which is of weight 6?. Notice that the
Hirota polynomial is homogeneous in the sense that if we assign the weight
2k+1to D, and add the weights in a product, then each term in the Hirota
equation has the same weight. For example, the weight associated with (4.38) is
4. The thrust of the question is then, given that 7 satisfies (4.38), how does one
“apply” the operator D2 to it? It is not by direct multiplication.

A fourth question, which brings us to the question of how all the different
approaches are related, is

(iv) Is there an algebraic way of explaining the particular form of (that is, the
coeflicients in) the Hirota polynomials? I hope so. What I would like to have is
an answer to question (iv) which relates these constraints to the algebras
associated with sl(2). The reason for this is that I believe (and the reader will
see the reasons for this in Chapter 5) that this property is the common
denominator of all the “methods” for analyzing soliton equations introduced in
this chapter.

We will now return to questions (i), (i) and (iii). Assume P satisfies
(4.43)—(4.45) and look for a three-soliton solution for (4.51),

+0,+A
T=1+e%+e%+ e%+ % %" 4
+ ee3+ﬂl+A31 + e01+62+A12 + e91+62+93+A 12+A31+A23.

Using properties (4.43)-(4.45) and (4.50), all terms have identically zero
coefficients except e®*%*% whose coefficient is built from four quadratic
interactions and is

P123e®=P(ky — Ky~ k) + et 4u An Pk, + k, + k),
where pi23 is the cyclic permutation over 1,2, 3 and
Pk, +k,+k3)=P(ky+ ko + ks, —ki—k3— k3, ki+k3+k3,.. )
This can also be written (using (4.50)) as

P12 P&z + k3) P(k; — ko) P (ks — k) P(k; — k; — ks)
+ P(k,— k3) P(ks— k) P(k, — k) Pk, + ko + k). (4.53)

Therefore, the condition that (4.52) has a three-soliton solution is that the
expression (4.53) is zero. Further, by similar considerations it can be shown
that the condition that (4.52) has a N-soliton solution is

Z P(Z Hlkl) l_[ P(P«jkj - p*iki)“'i“‘j =0. (4.54)

py=—1.1 P>

We will call this the Hirota condition. We will say that an equation which can
be put in Hirota form with a P satisfying (4.54) (and certain auxiliary
properties like (4.23)-(4.25)) has the H-property. In particular cases, such as
(KdV), where P =x,x,+x1, (4.54) can be shown to hold. The proof is usually
given by induction. I think it is clear, however, that the condition is rather
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awkward and clumsy and difficult to prove in general so it is useful to have an
alternative approach.

I claim, but have not yet completely proved, the following. Given a polyno-
mial P, (x,, x5,...) of a given weight, compute its phase shift function

. P, L (kl - kz)
Pp(k, +k;)

A

e = (4.55)

Then calculate all the polynomials P,, which share the same phase shift. Often
there will be more than one at each weight level. If there is at least one such
polynomial at an infinite sequence of weight levels, then the following three
statements are true:

(i} P, is a Hirota polynomial, i.e. has an N-soliton solution (satisfics (4.54)) for
arbitrary N.

(i) Each P,, gives a Hirota equation Py, - 7=0 in the P, family.

(iii) Each equation Py,7 - 7=0 in the list is a Hirota polynomial (i.e. satisfies
(4.54) and therefore has an N-soliton solution for arbitrary N).

Let me illustrate these statements with some concrete examples. Let P, be

x1X3+x1. Then, assume a form for P (from (4.43), only even levels are
allowed),

Py = x,xs+ ax3+ bx3x;+cx§.
Clearly (4.43) and (4.44) are satisfied. So is (4.45) if
1+a—b+c=0. (4.56)
Now demand that
(ky+ k) Pelk, —Kky) + (k1 — k) Po(k, +ky) =0
holds for all k,, k,. The left-hand side can be written
2k + ko) (ky— k)R k i+ kiks+ k3+ a(kT+3k3k3+ k)
~b(k1+k3)+c(k+6kikZ+k3)).
Therefore, in addition to (4.56) we must choose,
a=-2c—3. (4.57)
Therefore, since ¢ is arbitrary,
Po= x;%5— x5+ 3(x3 x5+ x3) + (¢ + D(x§—2x3— x1x4), (4.58)
is a one-parameter family of Hirota polynomials at weight level 6 spanned by
P(x,, X3, Xs, . . )= X Xs— x5+ 3(x3x5+ x3), (4.59a)
PM(xy, X3, X5) = x5 —2x5— x3x5. (4.59b)
The Hirota form for (KdV)s is
PO(D,, D, D)t 7=0 (4.60)
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and (4.59b) is the equation one obtains by “‘applying” D7 to
Py(Dy, D)7 7=0.

Notice how important it is to have three times in the problem. (KdV)s cannot
be expressed in Hirota form in terms of f; and t5 alone!
I will leave it to the reader to show

P = xyx,— 3xaxs+2x3xs, (4.61a)
P2 = x8+4x3x5+5x3xs, (4.61b)
PY = —x3x5+ x3x3, (4.61¢)
P =—x3xs+ x3x2, (4.61d)

where PQ7-7=0, r=1, 2, 3, 4. P{’v- v=0 is the Hirota form for (KdV),.
Py, r=2, 3, 4 are what one gets by “applying” D?, D, and D?, to appropriate
combinations of (4.59a,b) and (D, D, +D¢)7r - 7=0.

Repeating this process, it is not too hard to see that at each weight P,
M>2, there exists many Hirota polynomials. I will show you a better way of
interpreting this than simply “applying D? to (4.37)” when we discuss this
matter again in Chapter 5. We will also get an idea of how to count the number
at each weight level.

As an exercise, I invite the reader to calculate the sequences given the
polynomials

P=1x;xs— x5 (4.62a)
and
P=1xx,+x35. (4.62b)

The P of (4.62a) generates the Kotera—Sawada sequence [104] and has
nontrivial polynomials at an infinite sequence of weight levels which do not
include all of the even numbers. Can you find what they are? On the other
hand, (4.62b) does not have an infinite string of polynomials with the same
phase shift function. In fact, it appears to have none. Therefore, it only has a
two-soliton solution.

The following questions also remain open.

(i) Can one characterize the properties that an equation must have in order
to be expressible in Hirota form? Once it is in this form, one knows that it has
a two-soliton solution. Whether it has an N-soliton solution for arbitrary N
depends on whether one can find an infinite sequence P,, satisfying

PL(kl _kZ)PM(kl +k2)_PLﬂ‘1 +k2)PM(k1_k2) =0

where P, is the given polynomial. This expression is rather suggestive as it
expresses what appears to be a condition for the commuting of polynomials
and leads naturally to a definition of a Poisson bracket on the polynomial
manifold.

(ii) Suppose one could only find a finite number of such P,,. Is this possible
or, if one finds one P,, must there be an infinite number? I not the latter,
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then, if there are M P,,’s, does that mean there are N-soliton solutions up to
N=N(M)?

4e. The Painlevé property.’
(i) Classical work. Consider the system of Fuchsian differential equations

iy, (4.63)

where V is an m-vector and the A; are constant (m X m) matrices. In general,
the fundamental solution @ to (4.63) is a multivalued function of complex z.
Indeed, if we circle the regular singular point at a;, then ®(g; +(z—a)e*™),
while a fundamental solution matrix of (4.63), is not equal to ®(z); rather, its
columns are linear combinations of the columns of ®(z). The matrix M,
relating the two

d(g; +(z — g;)e*™) = D(z)M, (4.64)

is called the monodromy matrix, One can ask the following question. How can
one write A; as function of the location of the poles a, such that the group (it is
easy to see they form a group) of monodromy matrices remains fixed? The
general answer to this question was given by Schlesinger [90]

A _[A Al 334
da, a—a,’ T dg;

For m =2, the linear equation is a 2x 2 system and its regular singular points
can be located at the fixed points z =0, 1, «© and one moving point z=s. A
priori, there are twelve adjustable elements in the coefficient matrices A;, j=1,
2, 3 but they can all be expressed in terms of one function y(s) which satisfies
the equation

u+(_1__+ 1 + 1)!_1(_1_H+___1'___+ 1)r2
y s s—1 y—s y 2\y y—1 y-—s Y
y(y - 1)(y—s)( S s—=1 yly—1)
-2 —-B—+ ~8
-0z 7P v Yy~17 °(y-sy
Equation (4.66) is the most general second order equation

y"=R(y, y", s) (4.67)

with R rational in y, y' and analytic in s which has the following property:
The Painlevé property. The location of any algebraic, logarithmic or essential
singularity of its solutions is independent of the initial conditions. This means
that only the location of its poles can depend on the arbitrary constants of
integration.
Second order equations of the form (4.67) with these properties (the condi-
tions on R and the Painlevé properties) were studied in exhaustive detail by

(4.65)

) =0. (4.66)

© Please see p. 144 for a historical note on the pioneering work of S. Kowalevski.
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Painlevé and Gambier [91]. There are fifty canonical types which include
equations such as y” =y, equations solved by elliptic functions

y'=2y*+cy—v (4.68)

and six equation types whose solutions could not be expressed (except in
special limiting cases) in terms of known special functions. These six equations
are called Painlevé equations and their solutions Painlevé transcendents. The
reader can find a list of thesc equations in Ince [92]. Two which arise in these
lectures are the second

Qe =Xq+2q°—v (4.69)
and third (after a transformation z = e")
(), = —sinh u (4.70)

Painlevé equations.

Now, what has all this to do with completely integrable partial differential
equations or more generally with completely solvable models in physics? The
amazing fact is this: it is an observation that the nonlinear ordinary differential
equations which arise in a very natural way in these solvable models have the
Painlevé property. This fact is not believed to be coincidental. Rather, it is
believed that there are deep and intimate connections between exactly solvable
models and the Painlevé property. I will comment further on this idea later in
the section.

(i) The ARS conjecture. In 1977, Ablowitz and Segur [93], [35] noted that
since equations such as

G: + 649, + G =0 (4.71)
and
v, —60%0, + v, =0 (4.72)

were exactly solvable (under certain boundary conditions), one could also solve
the nonlinear ordinary differential equations obtained by imposing the various
symmetry properties of the equations. For example, Galilean invariance means
that (4.71) has solutions of the form q(x, t) = f(X = x — ct) satisfying

—cfx +6ffx + fxxx = 0.

The scaling invariance means that if q(x,t) satisfies (4.71), then so does
B>q(Bx, B>t) and if v(x, t) satisfics (4.72), then so does Bv(Bx, B>1). Setting

(X =gm)
) =—%m\ X="—%],
U( ) (3t)113 f (3 t)llS
we obtain after one integration
fx = Xf+2f3—v, (4.73)
the second Painlevé equation (4.69). As an exercise, I will ask the reader to
show that by a suitable transformation (bint: look at the Miura transformation),

solutions of (4.71) of the form q(x, t) =(1/(3t)**)g(x/(3t)'") obey (4.73) with
v=0.
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Ablowitz and Segur argued that the one-parameter family of solutions of
(4.73) with »=0 which decay exponentially as x — +c and algebraically at
x = —oo could be found by the direct application of inverse scattering theory. The
reason for this restriction is that inverse scattering theory requires the solutions
q(x, t) to decay at both infinities. I will tell you how to find the general solution
to the initial value problem for (4.73) in Section 5f (jii).

Further, knowing of the particular properties of solutions to the Painlevé
equation and observing that all the ordinary differential equations derivable
from known completely integrable partial differential equations had this prop-
erty, Ablowitz and Segur, who by this stage had been joined by Ramani [35],
made the conjecture that this is always true: namely, all ordinary differential
equations derived from completely integrable partial differential equations
have the Painlevé property. Sometimes, it may be necessary to be rather clever
in choosing the dependent variable (see (4.70)). The great advantage of the
idea is that it gives a simple and readily applicable test for integrability.

Let me illustrate using (4.73) with v =0. Suppose X, is a pole singularity of
f(X). Then we should be able to construct a Laurent expansion for f in the
neighborhood of X,

wo

)= Y a.(X—Xym (4.74)
n=—N
It is easy to show that in order for (4.74) to satisfy (4.73), N must be one.
Substitution of (4.74) into (4.73) gives the set of nonlinear algebraic equations

(n+D(n+2a,.r=a,_,+Xa,+2 2 a,a;.ay, j*tk+l=n,
jld=—1

(4.75)

for n=-3 (a, =0, n<—1) which we proceed to solve iteratively for a,.,, in
terms of the lower s’s. This can be done only if there is compatibility at the n
values n=-3, n=1. This is necessary because in each case we find the
coefficient of a,,., to be zero unless

az] = 1, (4'76)
aop+ Xea,+6a_,a2=0. 4.77)
We find that for n=-2, —1, 0
Xoa_ a.
ag = 0, ay, = "___06—1, a, = "'_4'1‘ . (4.78)

and so (4.76) and (4.77) are satisfied with the choice a_, = £1. After this point,
all the a, are uniquely determined and it is not too difficult to show that the
resulting series converges for sufficiently small X—X,#0. This family of
solutions has two free parameters X, and a; which is to be expected from a
second order equation. If the compatibility condition (4.77) had not held, it
would have been necessary to include In (X — X,) terms in the local expansion
for f(X) which would mean that the solution would see X, as a branch point. If
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this were the case, the location of a branch point would depend on the initial
condition and the equation would not have the Painlevé property.

The great advantage of the ARS conjecture is that it is simple to apply. Its
drawback is that in order to test the integrability of a partial differential
equation, one has to ask what one means by testing all the ordinary differential
equations associated with its symmetries. It would be better if one could
directly attack and test the partial differential equation itself. Let us do this for
(4.71) using the expansion

a_, a_,
(x~x0)* (x—x0)

Q(x, t) = + a0+ al(x - xO) +-- "y (4-79)

where x, and all the coefficients are allowed to be functions of t. Upon
substitution in (4.71), we obtain

n(n—1)(n-2)a, +6 Z ra,a,
-2
r+s=n-2

+a,_3,—(n—2)a,_2%0, =0, nz=-2, (4.80)

which we solve for a, in terms of the a,_,. We find for n=-2, -1, 0, 1,
a,=—2,a_,=0, a,=txe, a;=0. At n=2, the coefficient of a, is zero but so
is the sum of the other terms in the equation. Hence, a,(t) is arbitrary. At
n=3, we find a;=35X0, At n =4, again the coefficient of a, is zero but the
equation reads

24a4+ 6(20.00.2 + Zaw2a4) -+ a,, — 2a2x0t = 0,

which is satisfied exactly. All the later a,’s are uniquely determined. Hence
q(x, t) has a local solution which can be written in a Laurent expansion with
three arbitrary functions of t, x,(t), a,(t), a,(t). This approach was followed by
Weiss, Tabor and Carnivale [96] with modifications by Kruskal and 1 refer the
reader to their paper. In essence, the ARS conjecture has been modified to
read that g(x, t) has a local Laurent expansion in the neighborhood of those
surfaces in (x, t) space where it has pole-like behavior.

What I want to do here is draw your attention to the connections between
these results and those of the last section because I believe there is a direct
correspondence between the Hirota property and the Painlevé property of a
given equation. In both cases something magic has to happen in order for the
property to hold. In the former, one has to be able to (i) write the given
equations in Hirota form and (ii) show that the resulting polynomial P is one of
the class which admits N-soliton solutions for arbitrary N. This means its
coefficients, which it inherits from the underlying equation from which it was
derived, have to bear special relations with each other. This is also what must
happen when one applies the Painlevé test. The coefficients have to be exactly
right so that the series (4.74) (or (4.79)) is a Laurent one.
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But the connection goes deeper than this simple observation. Notice that
2

q(x, :)=—2:':—;+2"—:"", (4.81)

and that therefore a double pole of g(x, t) is a simple zero of the ubiquitous
7(X, 15, ts, . . .). Further, we know that (4.71) has an infinite sequence of rational
solutions (see Section 3h) corresponding to the infinite set of multisoliton
solutions and the requirements on P for the existence of the former and the
latter are the same, namely, the Hirota condition (4.54). The rational solutions
are obtained by expressing 7 as a finite polynomial function of x = ¢y, 15, t5, . . . of
a given weight (e.g. x, x*+12¢5,...). The conditions that one can find a
sequence of finite polynomial solutions are exactly the Hirota conditions. But
now look at this from the point of view of the Painlevé property. If 7 is
expressible as a finite polynomial in x, t5,..., then it is clear that it admits a
Taylor series expansion in the peighborhood of points which lie in the 7=0
surfaces. But if 7 has Taylor series expansions near surfaces where it is zero,
then the corresponding q(x, 14, . . .) has a local Laurent series near its poles.

The conjecture that the = function is analytic in each of its arguments has yet
to be proved. One of the difficulties is that it is only true for certain solution
classes. One has to find a convenient way of first removing all those points
where 7 and hence q has algebraic, logarithmic or essential singularities. This
set of points, of course, is fixed and independent of the initial conditions.

I believe, however, that the Painlevé test contains more information than a
simple yes or no as to whether the equations are integrable. Although the work
is still preliminary, there is every indication that, just as the Hirota polynomials
appear to have an underlying algebraic structure, so too does the Painlevé
property. In other words, it is my guess that some version of the Painlevé test
gives rise to the very same algebraic structure (in the case of KdV and the
AKNS hierarchy, it will be the infinite dimensional loop algebra associated
with sl(2)) which would arise by the application of the Wahlquist—Estabrook
method which is discussed in the first part of Chapter 5.

However, there are still many nagging questions. Kruskal has constantly
questioned the need to eliminate logarithmic and other singularities. After all,
who would deny that dy/dx =(y —a)(y —B)(y —+) - - - is integrable (is it?) and
yet x written as function of y has logarithmic singularities? Moreover, the
number of counterexamples to the conjecture that completely integrable ordi-
nary differential equations have the Painlevé property (as it has been described
in the last couple of pages) is growing and the most recent word out of Paris
(where the Ramani group works) is that the Painlevé test is dead! Whereas this
surely is an exaggeration, it is clear that some changes are required. Kruskal
has suggested that the Painlevé test is too strong and argues that a more subtle
test in which one looks at the behavior of the equation near a confluence of
poles (i.e., the equation’s worst singular behavior) is needed. His ideas are new
and I will not attempt to describe them here as he has yet to publish them.
They have at least two attractive features. First, they contain the original
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Painlevé test when it applies. More importantly, however, they go to the heart
of the nature of integrability (what is a completely integrable system?) and
make direct contact with the subtleties that distinguish between ergodic and
integrable flows on compact manifolds. (For example, x'~a,y'=f is an
integrable flow on the torus 0<x, y<1 (in which opposite boundaries are
identified) only if @ and 8 are rationally related. Why? The reason is that on
the torus the motion constant C = 8x —ay behaves very erratically and is, in
fact, not measurable if o/ is irrational.)

4f. Bicklund transformations. A central and recurring theme of the inverse
scattering method is that interesting nonlinear equations arise as integrability
conditions of overdetermined linear systems. We have shown how the KdV
equation and all the members in its family are integrability conditions of the
linear equations

v, H(P+qx, ts, .. v =0 (4.82)
and
v, . =BB®+c)v—-B®o,. (4.83)
Let us write the equation pair for the KdV equation (4t =t5)
q,+64q4, +q... =0 (4.84)
in system form as
—i{ q
V,= ( ) )V, 4.85
1 it (4.85)

and
—4i*+2igt —q, 4L*q+2igl— 9 —249°
Vi=\ . 3 e 1%
4L +2q 4il>—2igl +q,

with V=(v,=—v, +ilv, v,=v)". Bear with me while I make the following
little calculation. Define

(4.86)

y=2 (4.87)
%]
and find

v =—2ily+q+v?, (4.88a)

Y. = (—8il>+4igl —2q,)vy
+(4¢%q +2igd — g — 247 — (29 - 43V (4.88b)

The condition for the integrability of these Riccati equations is also (4.84).

Next set - -
q=—U,, q=—Uy,

whence u(x, t) satisfies
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(we have put the integration constant zero), or, depending on which ¢t we take
in the KdV hierarchy, the corresponding member of that family integrated
once with respect to x. Now define @ by

u—u

5
The claim is that if u(x, t) satisfies (4.89) (and, with respect to the different t’s,
the other members of the KdV family), then @(x, t) also satisfies (4.89) (and,
with respect to the different t’s, the other members of the family). We will

prove this in a moment. First, however, let us examine the consequences of this
assertion further. Substitute (4.90) into (4.88) and find

y—il= (4.90)

i, +u, (& — u)2 5
= + .
5 2 4 (4.914)
and
i, +u, (uwﬂ) (L’t—-u)2 2 2~
=2 - +q*—20%4. :
2 4\ 2q > q-—2L7g (4.91b)

Now, equations (4.91) are a one-parameter (£2) set of relations

Rﬁ(u’ u’xx’ ut; ﬁ’ a’x’ ﬂ'xx: at; cz) = O (4'92)

involving i, u and their partial derivatives. There are fewer relations than
variables. Further, we know u(x, t) satisfies (4.89). I invite the reader to show
by direct computation that ii(x, t) also does. There is also another proof which
lends more insight into the close relation between equations (4.91) and (4.85),
(4.86), (4.88). Using (4.91a), we can show that (4.91) can also be written

ﬁ,+u,=zq

~ ~ N2
-2 (Y)-24(Y) +ar-2r @910

2 2

which is simply (4.91b) with u and # interchanged. Therefore, we can write
equations (4.91a,c) as (4.88a,b) with y — —v and { — —¢ and where § replaces
g- But the change of sign of vy and { does not change the solvability conditions
and therefore G(x, t) satisfies (4.84) and @(x, t) satisfies (4.89).

We call a set of relations such as (4.91) a Backlund transformation. It allows
us to build more complicated solutions from simpler ones. For example, if we
take u =0 and solve the resulting pair of first order equations (4.90) in x and ¢,
we find ii(x, t) = —27 tanh n(x —4n*t—x,), ¢ =iv. For a more general u(x, 1),
the equations for & are more difficult to solve and there are much better ways
of building new solutions from old ones than solving (4.91) directly. I will show
you how shortly.

For the moment, however, 1 want to return to the notion of a Backlund
transformation. The term has existed a long time in the literature. It is very
hard to find a clear definition. The one I am giving you was given by Hanno
Rund {95] and it is now the generally accepted one. Let u(x. t) and d@(x. 1)



136 CHAPTER 4

satisfy the partial differential equations

Ew)=0 (4.93a)
and
D@E)=0 (4.93b)

respectively. Then the set of relations
R((u), (@), () =0, j=1,...,n (4.94)

where (1) and (&) denote strings, not necessarily of equal length, consisting of
u, @ and their various partial derivatives, is called a Backlund transformation if
these relations ensure that @i satisfies (4.93b) whenever u satisfies (4.93a) and
vice versa. If u and @ satisfy the same equation, the adjective “auto”™ is
inserted in front of Backlund. The set of relations (4.91) is an auto Backlund
transformation relating solutions of corresponding members of the KdV family.
The first half of these relations (4.91a) relates solutions of all members of each
family. The Miura transformation

q(x, ty=v%(x, t)—iv,(x, 1) (4.95)

connects solutions of every member of the KdV family with every member of
the modified KdV family, the first nontrivial equation of which is

v, +6v%0, +v,,, =0. (4.96)

We know from (1.12) in Chapter 1 (an equation which holds between each
corresponding member of the respective families, see [96]) that if v(x,t)
satisfies (4.96), then q(x, t), given by (4.95), satisfies (4.84). On the other hand,
a q(x,t) which satisfies (4.84) can give rise to a v(x, t) which does not
necessarily satisfy (4.96). Indeed solving (1.12) gives

v + 6070, + v, = A exp (-2:’ I q dy) ,

and we therefore cannot call (4.95) by itself a Biacklund transformation unless
we complete the set of relations (here by adding one relation) with another
relation (such as the equation (4.96) itself) which ensures that v(x, t) will satisfy
the modified KdV equation.

It should be clear that if we are to retain the central notion that q is a
function of an infinite number of independent variables, the Bicklund transfor-
mation which interconnects solutions of the whole family, must necessarily be
an infinite set of relations involving all the time derivatives. One can formally
derive these in exactly the same way as we found (4.91b). A much faster and
elegant way is presented in Section 5g, where we define a Bicklund transfor-
mation in terms of operations on the +-function. Recall that

y—ig=2—ig= -2, (4.97)
v v

2
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and since both u(x, t) and #“(x, ¢) satisfy (4.89), we can write

Jd J
u(x, t)=—2—Inr, {x,t)=—2—In+ (4.98)
0x ox

Therefore the equation (4.90) which defines i is simply

T=T0. (4.99)
One should be able to invert the process: namely,
7=70(x, {), (4.100)
where 7 is a solution of (4.82) with g replaced by §. But from (4.91a) we can
write 2
q =—q—2v—;~2§2 (4.101)

and therefore 1/v satisfies

(1) +a@rrico
v/ v
It is important t0 emphasize that the ¢ in (4.97)-(4.101) is a specific {, a
parameter which describes the soliton by which the solution § is richer than the
solution q. Let us therefore now call it ¢,. I will leave it as a simple exercise for
the reader to show that if v(x, ¢,) = v,(x) satisfies (4.82) with {=¢, and g=gq,
v(x, £) satisfies (4.82), then

(%, &) = v.(x, ) —%1—’—‘ v(x, £) (4.102)
1

satisfies (4.82) with q replaced by q (given by (4.90) and (4.92) or (4.101)).

This is a result of Faddeev [96]. Let us now combine these results with those of

Section 3d and determine what the Bécklund transformation (4.91) does to the

scattering data. I will follow closely the work of Flaschka and Mcl.aughlin [96].
Let the potential g{x) have the scattering data

S[Q] = {R(g)s g real; ({; = i'n]'s ‘Y]');V:Z}'

In order that ©(x, £) does not have a pole at a zero of v,(x), we must demand
that ¢7 lie to the left of the spectrum associated with g(x), in which case v,(x)
does not have a zero in (—o, «). Let us take (assume A #0)

(x) = Adlx, £1)+ Bo(x, £y).

Recall that since ¢, is not in the spectrum associated with g, ¢(x, {;) and
P(x, £;) are not proportional. Next let us choose v(x, ) in such a way
that d(x, &)= ¥(x, 2), i.e., T(x, ) ~e"** as x — +o for real ¢ It is a simple
exercise to show that o(x, &)=({—1) '¢(x &) if B#0, and is equal
to (it +m,) " W(x, &) if B=0. If B#0, then, as x — —ox,

{—im
{+im,

#x, 5} — a(d)e™ +b(=)e ™
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which, by comparison with (3.62), means that (remember R()= b({)/a({))

+i
e, B0=-b-0. RO=F2RQ) (4.103)
and the bound states are {;=in; for j=1,..., N with ¥, = ("h'*"'lj)/("h—'nj)'vi
(simply take the residue of R(Z) at { =in;), j=2,..., N and v, depends on A
and B. Similarly, if B=0,

a(d)=

Gx, ¢ )—>a(c)e-"1+§ i L b(~De
which means that
= {—imy - _ M™%
= , R R y Y=, 4.104
=00, RO={ERQO, F=Tly @100

and no new bound states are added.

Note, therefore, that whereas (4.103) adds a bound state {,=in, to the
spectrum, it also changes the reflection coefficient by a phase factor. In order
that § has the same scattering data as g except for the addition of one bound
state, one must first apply the Backlund transformation (4.104) (with B =0)
and then the Backlund transformation (4.103). The composite transformation
gives a § with scattering data

S{al={R({), { real; (C, = in; ’Yi)?;l}

where vy, depends on the choice of A and B in {4.103). Note, however, that if
one begins from a reflectionless potential R({), no unwinding of the phase shift
induced by the soliton adding Backlund transformation is required.

Next, we will look at how a Backlund transformation affects the v-function.
Since we make heavy use of (4.15) and (4.18), a formal result which is really
only applicable for soliton and rational solutions (in which case the asymptotic
expansion at { = is a Laurent expansion), we restrict our results to reflection-
less potentials. I will leave it to the reader to attempt to extend the domains of
validity of the formulae. We begin by using (4.18) to write (4.99) as

7= 10(x, {) = 7(Ad(x, {)+ By(x, —)), (4.105)

where v(x, {) is written as a linear combination of the two linearly independent
solutions ¥(x, &), Y(x, —£) whose (formal or asymptotic) connection with the
7-function is given by (4.18), namely,

ws 0=X —p=2EE

(4.106)

where, from (4.18),

X()=exp (i Z Czkﬂfzkn) €Xp (Z ; —t 2 )

i2k+ 1D dtarra
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Since we have chosen in most of this chapter to work with 2%*t,, ,, rather than
t,,.., (remember this removes the fractions 1/2%* from in front of the RHS of
the t,., flow (3.14)), we will write

. 2| _1 a
X()=exp (! 220 k‘zkﬂ) exp (Z L2k + D2 at2k+1)'

Using (4.106), (4.105) may be written
Tnew (AX(§)+BX( g))Told (4-107)

Let us do a few examples to show how all this works in practice. First take
To— 1. TheIl

= Ae® + Be ® (4.108)
where

e=izao“mﬂ, t=x (4.109)

Choose A = ae “*, B =ae'™ and call {=in and —ilx, =6,
=2« cosh (8 —6,)
the one-soliton solution. Next
72 (A2 X(8) + B X (= §)) (A X(&) + B X(= 1))

It is a simple exercise to show that

oxao=|EE" (4.110)
X( = I—"—j .
{+¢&
Thus, using the obvious notation,
61_§2 12 0.+8 §l+£2 —
,=AA €%t A B 6,=6,
R FOE Y SS G TS
47|V s 12
+A1B2 gl Z;Z 691_92+B1B2 gl €2 _e'_ez,
£ — {i+4

which, after choosing the coefficients of the first three terms to be unity and
dividing out by €%"%, becomes ({ =in;,, j=1,2)
~2er202)

the two-soliton solution. Recall that the exponential factor out in front whose
exponent is linear in t5.,, k=0, 1,... does not contribute to the field g(x, 5,
ts, . . .). This process can be repeated.

Before we end this section on Backlund transformations, I want to add one
more calculation which derives the formula for Backlund transformations
between numbers of the AKNS hierarchy when r=—gq. Recall from (3.36b)

Ty= e91+62(1+e261+e_262+ ‘771 N2
M+,
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that the appropriate eigenvalue problem in that case is

V3 iV, = qu,,

) (4.111)
Vo — V2= —qU,-
Then v, defined to be v,/v,, satisfies
¥ =2y —q(1+ 7). (4.112)
If we set
utit
¥ = tan , (4.113)
4
where g = —3u,, 4= —3ii,, then (4.112) is
p
i, ~ t, = 4if sin——— (4.114)

The corresponding relations between i, and u,, , can be found by simply
converting the equations for the time dependence of v,, v, into Riccati form. It
is easy to show that if q(x, tx.1)=—3U, (X, t2r,1) (k can also be negative, e.g.
k =—1 gives the sine-Gordon equation, see [97]) satisfies the t,, ., flow in the
AKNS hierarchy with r=—q (to say in this solution manifold, only the odd
flows are allowed), then so does g(x, fox41) = — 30, (X, t41). Hence (4.114) and
the corresponding time relations are a Backlund transformation.

I give this calculation here because of the obvious connections in its method
of derivation with the Backlund transformation for the KdV hierarchy. We
will, however, tackle this same question again in Chapter 5 from a different and
more general point of view which has the advantage that the complete set of
relations corresponding to (4.114) and its companions relating u,,  and &,
is given by one formula. Furthermore, the choice of transformation (4.113)
becomes an obvious consequence. The trouble with (4.113) as it stands is that
while it is natural to make a tan substitution to solve the Riccati equation
(because of the ratio v, :2y:1++?), it is a priori mysterious as to how a i
introduced in this way will also satisfy the same equation that u does. It is not
until a posteriori, when one sees the symmetry of (4.114) and its time
companions, that this fact becomes clear.

4g. The appearance of a Kac-Moody algebra. In this chapter, we have seen
that the 7-function, 7(t;, t3, ts,. .., laxi1, - - -), carries all the information we
ever need to know about the space of solutions for the KAV family. It changes
in cither one of two ways. First, it can change because of the flows where the
independent variables {f,..1}5 evolve but the functional form of = remains
fixed. For example, the two-soliton solution (4.47)

T = 1 4+ ee1 + eoz-|— eﬂl+92+A12,

i 2
m-—"m

9 = —1)* .2k+1t . eAlz.—_( ) ,
T g ( ) 7'1 2k+1 1}1-!—112
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evolves under the flows but still remains a two-soliton solution. Second, as we
have just learned in the previous section, the 7-function can change its
functional form via a Backlund transformation while keeping the sequence of
independent variables {t,, ..}o fixed. Each of the changes is a group action and,
in each case, the new 7 also satisfies all the equations of the KdV family, either
the infinite sequence of quadratic Hirota equations or the sequence

=-8—L" Lk =2——82—-—l (4.115)

Qo Ty = % 1 Aty Oty e n )

Therefore, the solution space of the KdV family is mapped out by the joint
actton of the flows and Backlund transformations. The infinitesimals of these
actions, the infinitesimal symmetries, form an infinite dimensional graded Lie
algebra (a Kac-Moody algebra) which is isomorphic to the central extension of
the loop algebra of si(2, C), the latter denoted by sl(2, C). This is the point of
view developed by Date, Jimbo, Kashiwara and Miwa in [39]. It contrasts with
the point of view developed in Chapter 5, in which part of sl(2, C) is used as
the phase space. The transition from the latter picture in which solutions are
curves in a Lie algebra to the former in which solutions are points in a
representation space, i.e. 7(t;, 13, . . .), has not yet been worked out in a logical,
Lie theoretic way but I will try to tie the two points of view together with some
suggestive formulae in Section 5j.

We now turn to the business of identifying and finding a representation for
the infinitesimal symmetries corresponding to the flows and Backlund transfor-
mations. First, observe that the action of the flows on 7(ty, #5, . . .) is simply the
action of translating the arguments and can be represented by

- a
exp (Z Ao +1 )T(fb PN PR T Lok ¢ R s PO SYNPT oF 173 N0 TN
0 ] 73
(4.116)
for arbitrary values of a,, ..., a+i- The infinitesimals of this group action are

represented by the sequence {0/dt,, . ,};. We also observe that since all the
quantities of interest
82
L¥Yq=2———In~ (4.117)
a1, Aty 1y

are second log derivatives of the 7 function, one can multiply 7 by an
exponential whose argument is linear in the times {iy,}y, i-.€. by
exp Yo boxsqtos, for arbitrary b, ..., by q,.... The infinitesimals of this
class of symmetries are represented by {t,..1}o- The two sets of elements
{8/t 1Y and {t,, ..}¢ generate a Heisenberg algebra

i
__HH’ t . = 8 iy
[at2k+1 At k'

a a
[ ] =0, [tn11s £2541]=0. (4.118)

Otossr Oloys1
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Again, I remind the reader that this algebra is derived from the symmetries
arising from the flows and from the fact that there is an equivalence class of
7-functions each of which corresponds to the same solution g of the KdV
family. It is useful, at this point, to think in terms of inverse scattering theory
language. We know that the solution type is specified by the “initial” scattering
data

S(0)={R(¢& 0), & real; (£ = in;, b;(0) = e>™ )7} (4.119)

The flows change the scattering data merely by changing the phase of the
reflection coeflicient and the position coordinates X; of the solitons linearly in
the times. That is,

S = {R (£ 0) exp (2i i §2k+1t2k+1)§ real;
0

N

({, - i'n]-., bl'(t) = b] (0) eXp (Zi Z €j2k+1t2k+1)) }. (4.120)
0
(Digression. We have pointed out already that the inverse scattering trans-
form is a canonical transformation which carries us from the old coordinates
q(x) to the new ones, the action-angle variables (see [13], [70], [75))

1

2
pP= {p,- =207, p(&)= ——éln (1—IRI2)} ,
w

q={q; =In b, q(£)= Arg b(§)},

whose Poisson brackets also form a Heisenberg algebra,

{Pis 4= s {p(€). q(&N=8(¢£—-¢)

and all other brackets are zero. I do not yet know a Lie theoretic way of
identifying these two Heisenberg algebras, or if indeed, one is the manifesta-
tion of the other.)

The flows preserve the solution type. On the other hand, the Backlund
transformation changes the solution type in the sense that it adds new compo-
nents to the scattering data. For example, starting with the vacuum state

S={R(£ 0)=0, £ real; N=0},

(4.121)

one can build the one-soliton state

S= {R(f, 0)=0; { real; ;= im,

by=exp (2mxo+ X (1) et )}
0
by applying the Backiund transformation
Tnew = (AX(£)+ BX(—g))Told (4.122)

with 754=1 and X({) the operator given by (4.18). In principle, one can
build all the solutions out of the vacuum state by Backlund transformations,
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but in practice only the multisoliton solutions are tractable. The Kyoto group
like to think of the multisoliton solutions as being dense in the space of all
solutions, but they do not make clear in what sense this is so. Nevertheless, for
the purpose of continuing this discussion, let us accept this. For the multisoliton
solutions, we can rewrite (4.122) as

Toew = (1 + BY(Z))Tolds (4- 123)

where 8= B/A =e ?™° locates the initial position of the soliton we are about
to add and

N ok < 2 0
YO =ex (_2@ O wr ) erp (§ ik + )7 atzm)' 124

Equation (4.123) holds because one can always divide out of 7 the exponential
factor whose argument is linear in the times. The reader should prove that

_¥n2 oo
Y@ YN =(5) exp (-2 8 @+ ). @125)
{(+¢ 0
Note, in particular, that Y2({)1 =0 and that one can then write (4.123) as
Thew — exp (BY(g ))Told- (4-126)

The infinitesimal action (as the initial point x, — +, 8 becomes progressively
smaller) is given by the vertex operator Y({). Formally Y({) can be expressed as
an infinite Laurent series

Y(c)=_2 Yors1d

Because the operators Y(¢), Y(¢) do not commute when ¢+ ¢’ = 0 (because of
the factor (£ + {')? in the denominator of (4.125)), the coefficients Y, ., obey a
nontrivial set of commutator relations [39].

The important fact is this. Lepowsky and Wilson [102] have shown that these
relations, together with the Heisenberg algebra (4.118), are isomorphic to the
infinite dimensional graded Lie algebra (Kac-Moody algebra) si(2, C)DZ,
denoted by A", the central extension of the loop algebra of si(2, C). Each
term in sl(2, C) is the product of a grading parameter A times an element of
sl(2, C) which can be written in a matrix representation as hH + eE + fF with
the basis vectors

= 3} B o o)

We therefore have one answer to the question:

“What does sl(2, C) have to do with KdV?”’
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Solutions of soliton equations on the KdV family form an orbit (the set of all
7(ty, 13, . . .)) of the highest weight vector (which corresponds to 7=1) in the
basic representation of §1(2, C)® Z. The algebra acts on solutions as an algebra
of symmetries. The alternative point of view in which the algebra is used as a
phase space and the connections between the two points of view are given in
Chapter 5.

Historical note. In examining the equations of motion for the general top,
Kowalevski observed that in the two special cases (the Euler and Lagrange
tops) where the system was known to be integrable, the solutions involved
elliptic ® functions and had no singular points other than poles for finite
complex values of time. She wondered whether this (what we now call
Painlevé) property might in fact be also valid for the general top. She found the
answer to be negative but in the process discovered a new choice of parameter
relations (between the moments of inertia, etc.) for which the property does
hold and for which the top equations are integrable. Kowalevski therefore was
the first person to utilize the Painlevé property. The reader should consult S.
Kowalevski, Acta. Math., 12 (1889), pp. 177f.; 14 (1890), pp. 81ff. See also
the article by H. Yoshida in the volume cited in [39].



CHAPTER 5§

Connecting Links Among the Miracles of
Soliton Mathematics

Sa. Overview. In this chapter, we investigate the mathematical structure of
soliton equations and attempt to develop a viewpoint from which most or all of
the miracles of soliton mathematics appear to be natural consequences. At the
very least, we should like to see some common thread which ties them
together. The miracles include:

1. An infinite number of local conservation laws and symmetries; member-
ship in an infinite family of commuting flows; Hamiltonian structure (some-
times structures).

2. An equivalent statement of the nonlinear equations in bilinear form (the
Hirota equations); the 7-function, which when considered as a function of
infinitely many independent variables, contains so much information about the
solution manifold; the Painlevé property.

3. The association with a linear eigenvalue problem; inverse scattering;
isospectral, iso-Riemann surface and isomonodromic deformations; the
Riemann—Hilbert problem.

4. Backlund and Schlesinger transformations; vertex operators.

5. The ideas of Wahlquist-Estabrook and the appearance of a rich algebraic
structure; “what does si(2, C) have to do with NLS and KdV?”’; the notion of
reduction and the connection with the Zakharov-Shabat “‘dressing” scheme.

The key clements of our new perspective are that the appropriate phase
space in which the (one spatial dimension) soliton equations live is a Kac-
Moody algebra (an infinite dimensional, graded Lie algebra) and that it is
important to think of each dependent variable as a function of an infinite
number of independent variables (the flow times ;) with no one distinguished
from another. The only time that it is important to distinguish one variable is
when we attach some global behavior to the dependent variables as function of
one of the independent variables, as for example when we wish to solve the
equation of interest as an initial-boundary value problem. All the work
described in this chapter is joint with my colleagues Hermann Flaschka and
Tudor Ratiu of the University of Arizona and has appeared (or is about to) in a
series of papers in Physica D [38].

It would also be desirable to understand the fascinating connections between
soliton mathematics and integrable nonlinear partial differential equations and
other solvable models in statistical physics such as the nearest neighbour Ising
model. I will give some references to these latter developments [103] but will
not pursuc them further in this set of lectures. Neither will anything be said
about soliton equation hierarchies with spatial dimension greater than one but
the interested reader should be aware of reference [39] in which the Kyoto
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group discuss the KP (Kadomtsev—Petviashvili) hierarchy. (See also Exercise
3b(5)).

The outline of the chapter is as follows. In Section 5b we show how,
beginning with an equation or set of equations, one determines if it is
integrable and, if so, how one finds the algebraic structure of the phase space in
which the solutions live. The method used is a variant of the Wahlquist-
Estabrook method in that it follows their basic ideas while avoiding the
differential geometry terminology. In particular, we show that the algebraic
structure of the AKNS hierarchy is isomorphic to (a subalgebra of) sl(2, C), the
loop algebra (O~ X_, ', X_;esl(2,C)) associated with sl(2, C). From the
properties of many computational results, it would appear that the augmented
Kac-Moody algebra AP, consisting of AL (sI(2, C)®Z with the addition of a
derivative element, may be more relevant. However, there are difficulties
associated with working with A{? which I will discuss in Section 5I.

The Wahlquist-Estabrook ideas provide the motivation for the choice of
phase space. Once established, and once it is realized that the phase space G is
the direct sum of two algebras K, N in which the orthogonal complement K"of
one is the dual N* of the other with respect to a suitably defined inner product,
there is a natural way to define Poisson brackets and Hamiltonian vector fields
on K+= N*. When the latter are generated by functions of a special class, the
so-called ad-invariant functions ®,, one immediately obtains an infinite family
of commuting flows in Lax form Q, =[Q®, Q] where Q is the general element
in the phase space (the dual of one of the subalgebras) and Q® =y V®,,
where V is the gradient and y the projection into the subalgebra N. All the
commutability properties are automatic consequences oOf very general
theorems. This material is contained in Sections Sc. Also contained in this
section is a discussion of how one relates the flows and Hamiltonian structure
introduced in the manner described above with the flows and Hamiltonian
structures which arise when x is a distinguished variable as, for example, when
we begin with a distinguished eigenvalue problem V= PV, with P polynomial
in £ The reader will recall from Section 3c that if P is of degree one (a gauge
transformation, see Section 5g, can always bring it to the form (3.31)), then the
AKNS hierarchy results; if it is of degree two, then the DNLS hierarchy [78]
obtains.

At the end of Section 3¢, I go through several exercises in which examples of
Hamiltonian vector fields on duals of subalgebras are given in other contexts.
The first two examples give rise to the equations for the simple harmonic
oscillator and the Toda lattice with free ends. The third example shows how to
include the KdV and MKdV families in a Lie-algebraic setting. The Miura
transformation relating the solutions of the two families is an immediate
consequence.

In Section 5d, we take advantage of the particular shape of the Lax
equations and write down straightaway all the conservation laws

d d
— conserved density = — flux,
ot o0x
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where the x and t are any two members of the infinite string of independent
variables {t. }; moreover, we can give explicit expressions for all the conserved
densities and fluxes. These formulae are new.

At this stage, one can proceed in either of two directions, each one
associated with the miracles listed under (2) and (3) above.

First, we note that the conservation laws have a structure which expresses
the fact that the curls of three infinite dimensional vectors are zero. This
immediately invites the introduction of potentials. These potentials are the set
of Hirota T-functions which for sl(2, C) consist of a triplet {7, o, p}. When the
equations of motion are rewritten with these potentials as the dependent
variables, one obtains the Hirota bilinear equations. As we have already
mentioned in Chapter 4, the conditions for multisoliton solutions are equival-
ent to the conditions which ensure the Painlevé property.

Second, one observes that the Lax equations can be solved formally by the
introduction of an auxiliary matrix V, Q = VQ,V !, where Q, is constant in all
the times. The V then satisfies V, = Q™ V which is the sequence of auxiliary
equations, the integrability conditions for which the equations in all the
hierarchies are associated with sl(2, C). Any one of these can be chosen to be
the “eigenvalue’ problem by imposing global constraints on the behavior of the
dependent variables Q with respect to that single independent variable, For
example, one might demand that all the nonconstant entries in Q approach
zero as the special independent variable tends to +c. All the other indepen-
dent variables then play time-like roles and are treated in the initial value
problem sense. For example, in the AKNS hierarchy, f; is the special variable;
in the DNLS hierarchy, of which the derivative nonlinear Schridinger
equation and the massive Thirring model are members, t, is the special
variable. Associated with the constraints in the special variable is a certain
corresponding analytic behavior of a suitably normalized fundamental solution
matrix V, when considered as a function of {, the grading parameter in the
Kac—Moody algebraic structure. In particular, the notion of iso-spectral flows
can be introduced. This idea, together with a discussion of iso-Riemann surface
and isomonodromic flows is given in Section 5f.

The connection between this second direction and the Hirota functions is
reestablished when we examine in Section Se, just as we did in Chapter 4 for
the KdV equation, the formal asymptotic behavior in { of V. One finds that the
asymptotic series, which first is expressed in terms of the entries in Q, can be
reexpressed in terms of the potentials and gives formal relations between V
and {7, o, p} with the aid of suitably defined ““vertex” operators.

In Section Sg, we introduce Backlund transformations. Our approach is very
general. We simply ask: what transformations on V keeps the form of the Lax
equation Q, = [Q®), Q] invariant? The resulting gauge transformations

Vne = RVoldS,

in which R plays the dominant role, induce a Backlund transformation on Q;
indeed the relation between the new and old Q’s has a very simple form. It is



148 CHAPTER 5

algebraic,
Qnew = RQoldR“] .

Several examples are discussed and two types of Backlund transformation are
introduced. The first may be familiar to the reader; it is the one that adds
solitons. Like the time flows, these Backlund transformations are continuous
symmetries; namely, new solutions can be built as continuous deformations
from old ones. The second, called a Backlund-Schlesinger transformation, is
somewhat novel. It is designed so as to change the monodromy of the
fundamental solution matrix at { =« and, when applied sequentially, becomes
a difference equation. This transformation corresponds to a discrete symmetry
of the equation family and adds a new integer-valued variable n to the list of
independent variables. We will see how, as functions of n and t;, the depen-
dent variables of the AKNS hierarchy satisfy the differential-difference equa-
tion of the Toda lattice.

Moreover, the Backlund transformations which add solitons can be rewritten
in terms of the “vertex” operators acting on the 7-functions {t, p, ¢}. It turns
out that the auxiliary 7-functions p and o can be obtained by applying
Backlund-Schlesinger transformations to the main 7-function 7. Indeed, re-
peated application of the Backlund-Schlesinger transformation gives the suc-
cession of 7-functions 7(n, ty, 1, t3, . ..) for the Toda lattice family; namely
7(45,1,) is the time ¢, history of the 7-function for the Toda lattice (from
neighboring pairs of which the displacements may be computed) at the 45th
lattice site.

In Section 5h, we introduce the notion of grading. The basic idea is that
there is more than one way that one can decompose a given algebra G into two
subalgebras K and N. Each independent decomposition leads to a different set
of flows. The different decompositions can be found through a process called
grading by which one assigns different weights, consistent with all the commu-
tation relations, to the basis vectors and grading parameter. In the case of
sl(2, C), the basis vectors are the H, E, F defined in (5.40) and equivalent to
the Pauli spin matrices, the grading parameter is { and the general element is
X=Y> X!, X ;=h_;H+e_ ,E+f_F. The number of independent gradings
is related to the number of independent automorphisms of finite order of the
underlying algebra. For sl(2, C), whose elements we decompose into elements
of two subalgebras K and N, with degrees less than zero and greater than or
equal to zero respectively, there are two. The first, called the homogeneous
grading, gives rise to the AKNS flows, the second, called the principal grading,
to the KAV and MKdV families.

In Section 5i, we introduce a second Hamiltonian structure which arises by
changing the definition of the inner product on the algebra. It turns out that
this structure is more convenient in Section 5j in which we show how the Lax
equations Q, = [Q%*, Q] are a reduction of a much simpler flow in a larger
phase space. The reduction is achieved by taking advantage of the symmetries
enjoyed by the system of equations. The basic idea is not new. It has long been
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known that if an m-dimensional Hamiltonian system has n =m constants of the
motion in involution (equivalent by Noether’s theory to n symmetries), then
the phase space can be reduced from 2m dependent variables to 2(m —n). If
n = m, the system is said to be completely integrable. In Section 4c, I showed
how the motion of a mass spring system on the plane (of dimension two) can be
reduced to a one-dimensional system (described by a second order ordinary
differential equation) by using angular momentum conservation which corres-
ponds to the rotational symmetry inherent in the problem. For the Korteweg—
deVries and nonlinear Schrédinger equations, some of the infinite number of
motion constants admit simple physical interpretations, like conservation of
mass, momentum, energy, number density, current density and so on, but most
do not. They are then called hidden. However, their identity is known once we
have identified the Lie algebra G in which their solutions live. If G is the
corresponding Lie group and K, N the subgroups corresponding to the sub-
algebras K, N, then the following is true. The large symplectic manifold on
which the flows are simple (just like action-angle variables, half the variables
are constants, the other half move linearly with time) is T*G, the cotangent
bundle of G. The symmetry group by which we reduce the phase space TG is
K (the abstract analogue of the classical reduction theorem is due to Marsden
and Weinstein [88]) followed by a (trivial) reduction by N. The reduced phase
space is N* and it is on this that the solutions Q to the Lax equations
Q, =[Q*, Q] live.

Furthermore, the reduction process gives us, in principle, a means by which
we can solve the Lax equations. The key step is one in which an element g of
G is factored into k™ 'n, with the left and right factors belonging to K and N
respectively. This step is the algebraic equivalent of the Riemann-Hilbert
problem. The factorization process gives us another opportunity to define the
7-function. Here it arises as an infinite dimensional determinant. (You will
recall that it makes its first definitional appearance as a potential; see Sections 4b,
5d.) All this is done in Section 5j. At the end of this section, we show how the
formal solution of the Lax equations also leads to an algorithm by which one
solution type is transformed into another and in particular how multisoliton
solutions are built out of the vacuum state. This algorithm, which is equivalent
to a Backlund transformation, turns out to be completely analogous to the
“dressing” scheme proposed by Zakharov and Shabat. At this time, we also
discuss how the phase space is mapped out by the joint action of the flows and
Backlund transformations, which are continuous symmetries of the equation
family, and Backlund-Schlesinger transformations which are discrete symmet-
ries. For the principal grading, in which the KdV and MKdV families arise and
for which soliton equations there is only one t-function, there are no
Backlund-Schlesinger transformations. In that case, as we discussed in Section
4g, the connection between the appearance of the Kac—Moody algebra as the
phase space on the one hand and as an algebra of symmetries on the other can
be made. For the homogeneous grading, in which the discrete symmetries are
present, the complete connection is more difficult to make. In Section 5k, we
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attach to the flows Q, =[Q", Q], k=0, the ones corresponding to the
negative times t,, k <0. The most familiar examples of these are the sine-
Gordon and massive Thirring model equations. This material is new.

Finally, in Section 51, we discuss the changes which are necessary if we take
as the phase space an extension of the loop algebra, the additional elements
being a center and a derivation. There is much evidence that it is useful to
include the extra elements. For example, certain formulae make much more
sense when they are used. However, there is a major difficulty. Whereas the
Lax equations themselves still appear to hold, the notion of the ad-invariant
function, so important in Section Sc, is lost. In the new algebra, such functions
may not even exist. We certainly have not been able to identify any. Another
disappointing feature of the present theory is that it still does not allow for a
Lie algebraic definition of the r-function, nor do we yet have any idea of the
space in which it lives. It makes its appearance in a fairly natural way as a
potential and as the determinant of the coefficient matrix in an infinite set of
linear equations; it also can be formally defined in terms of the V, the auxiliary
function by which the Lax equations is solved, and its “{” derivative (which
corresponds to the action of the derivative element in the extended algebra).
But these are computational facts of life, rather than Lie algebraic necessities
and clearly a deeper understanding of this remarkable beast is needed.

As a final note in this overview, I include a diagram, Fig. 6, which attempts to
bring a visual perspective to the various soliton miracles.

5b. The Wahlquist-Estabrook approach’ [37],[77],[97].

(i) Introduction. The goal of this section will be to answer the question: is a
given equation integrable and, if it is, what is the natural setting in which its
integrability is readily apparent? In answering this question, two guiding
principles, gained from a decade of experience, are kept in mind. The first is
that soliton equations arise as the integrability condition of linear systems and
the second is that each soliton equation is a member of an infinite family of
commuting flows. QOur first goal, therefore, is to try to write the nonlinear
equation as the integrability condition of the pair of linear systems V, = PV,
V,=QV by an appropriate choice of P and Q. This step will lead to
expressions for the dependence of P and Q on the dependent variable of the
nonlinear equation and its derivatives together with an open-ended set of
commutator relations. Further restrictions on P and Q arise by insisting that
the infinite sequence of possible Q’s commute. This second requirement reads
directly to the choice of Kac-Moody algebra as phase space. In the case of the
AKNS hierarchy, the coefficient matrices turn out to be elements of §l(2, C),
an infinite dimensional loop algebra in which each basis vector can be written
as the product of one of the basis vectors

a-(y ) 2= o) 7= o)

7 Section 5b is rather lengthy; on first reading, you may prefer to accept the conclusions and pass
on to the later sections. Please read also the comments in the Note, p. 234.
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of sl(2) and a complex valued parameter { raised to an integer power. The full
Kac-Moody algebra si(2)=sl(2)+CZ+CD contains a center and derivative
term whose roles in the theory will be discussed in Section 51.

To our knowledge, this is the first time that the open-ended algebra
generated by the Wahlquist-Estabrook method has been interpreted in a
Kac-Moody framework.

(i) The nonlinear Schrodinger equations. Consider the first pair of nontrivial
equations of the AKNS hierarchy,

q. = if2(q.. — 2¢°r),

5.1
r, =—if2(r,, — 2qr°). G-
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We attempt to write these equations as the integrability condition
P.—Q.+[P,Q]=0 (5.2)
of the pair of linear equations
V, =PV, (5.3)
V,=QV. (5.49)

Here we think of P and Q as matrices of arbitrary order whose coefficients
depend on g, r and their derivatives. We could have taken (5.3), (5.4) to be
nonlinear, V, = F(V), V, = G(V) in which case the commutator in (5.2) would
be the general Lie bracket but in all cases to date it has been more conventent
to take the linear representation of the underlying algebra.
We begin by making the simplest assumption that P depends only on q and
r. If this is so, it must depend linearly on these variables as the following
argument shows. If P=P(q, r), from (5.1) we have P,=(if2)P,(q,. —2q°r)—
(i/2) P.(r..—2qr*) where subscripts denote partial derivatives. In order to
balance this term in (5.2), Q must depend on g, 1., ¢, ¥ and Q, = Q,q, + Q.1 +
Q,. 4 + Q. r,- A balance of the q,,, r,, terms shows Q, =(i/2)P,, Q, =—(if2)P,
which after integration gives Q=(if2)P,q,—(i/2)P,r,+O(g,r). Now Q,=
(i/2)P, Gy, — (i2) Py, +(if2) P,.q%— (if2)P,r? plus terms which are at most linear
in q,, r,. Since the commutator has terms proportional at most to q,, r,, we must
have P,, = P,, =0 which means that P(q, r) can have the form —iH +qE +rF+
qrG. However, as can readily be verified by a parallel of the ensuing analysis, G
commutes with all other elements (because the coefficients of g°r,, r’q, and
rqx — qr, must vanish) and therefore belongs to the center. Therefore it plays no
role in the commutator portion of (5.2) but is simply a manifestation of a
conservation law P, = Q, (equation (5.2) without the commutator) which in this
case reads (qr),G = (i/2)(rq, — r.q).G. Since this information is contained in the
equations anyway, we will, without loss of generality, simply leave out this
element.
Therefore, we set
P=—iH+qE+F (5.5)

and from (5.1), (5.2) reads
Q. +[Q, P1=5 (4o ~24"NE~7 (1.~ 2a)F. (5.6)

Now, solve (5.6) for Q; first write Q = (i/2)q.E —(i/2)r,F+ O(g, r). Then col-
lecting perfect x derivatives from the commutator, we find Q=
qE; +rF, — (i/2)grH,— iH, where we have defined H,, E,, F, by

[E, Fl=H,, [H,E]=2E,, [H,F]=-2F, (5.7)

and —iH, is simply a constant matrix of integration. Therefore,

Q=—ifl,+gE, +rF,+~ g E—~

i
2 2 er"_"i quo, (5.8)
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provided the relation

[Q, P1= —iq*tE + iqr’F (5.9)

is satisfied. We find by equating the coefficients of g’r, qr*, >, r*, gr, q, r, 1 that
q*r: [Hy, E]=2E, (5.10a)
qr’: [Hy, F]=-2F, (5.10b)
q*: [E E]=0, (5.10¢)
r’: [F,F]=0, (5.10d)
qr: 3[H,, H]+[E, F,]-[E,, F]=0, (5.10e)
q: [H, E}=[H, E,] (5.10f)

r: [fL, F1=[H, F], (5.10g)
1: [H,, H]=0. (5.10h)

A few remarks are now in order.

1. The set of commutator relations is unclosed. The table will be given in
Table 2.

2. The set (5.10) contains the closed subalgebra sl(2) H,, E, F (see (5.7) and
(5.10a,b)).

3. Note the sense in which soliton equations involve a balance of nonlinear-
ity (here represented by the terms g’r, gr®) and dispersion (q,,, r,..). Equations
(5.10a,b) arise because of the balance [—(i/2)qrH,, qE+rF] with —ig*rE+
iqr’F. But the latter term arises directly from the nonlinearity in the equation
while the former is a result of the integration of the product of the integration
of the linear terms g, FE and r_F with gE +rF. Had the nonlinear terms been
q’r? and q*r®, no such balances would have been possible and the only possible
P, Q pair would have been the trivial ones P « grG, Q = (rq, —r.q)G expressing
the existence of a (single) conservation law. This is one of the real advantages
of the Wahlquist—Estabrook method. Nonsoliton equations show their inade-
quacies, quickly!!

4. From the Jacobi identity, (5.10e) implies

[H, Ho]=0 (5.10i)
and
[E, F1]=[E,, Fl, (5.109)
and we define
[E. F\]=H,. (5.10k)

5. The last three equations (5.10f, g, h) define H,, the arbitrary constant of inte-
gration; they do not give any information about what we consider to be the
basic elements H, E, F from which all other elements are generated. For exam-
ples, [H;, E]=2E,, and, as we shall see when we construct the table for (5.10),
(H, E}=2E, and so on. Nevertheless, one can use H, to effect an artificial
closure on the commutator relations. Satisfy (5.10h) by letting H,=¢H where {
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is an arbitrary constant. Then [H,, E]={[H, E]=2E, and (5.10f) and (5.10¢)
give [H, E\]=2¢{E, and [H, F,]=—2LF, respectively. We obtain Table 1.

TABLE |
H, | E F H H, E, F,
H, 0 | 2E | -2F 0 0 2E, | —2F,
E 0 H, | —2E,| —2E, | © H,

0 2Fl 2F1 _Hl 0

0 0 2{E, | -2F,

H, 0 |2E, | -2F,
E, 0 {H,
F, 0

This algebra admits the well-known representation
H=H,={H,, E,=(E, F,=[F,

) WP R

The artificial closure is the means by which Wahlquist and Estabrook arrived
at the form of P and Q in the context of the Korteweg—deVries equation and it
is the way in which succeeding authors have proceeded [97]. We will now
reexamine the table without making any closure assumptions. In Table 2, the
integers in the right-hand corners of the boxes mean: 1, by definition; 2, direct
deduction from (5.10); 3, a consequence of (5.10) and the Jacobi identities.

As an exercise in the application of the Jacobi identity, I invite the reader to
complete the table. Observe that, if the elements

[H, H]=2X, i=1,2,... (5.12)
are zero, then the elements H,, E_, F, obey the relations
[Hp’ Eq] = 2Ep+q1 [ ] p+r7 [ ‘a» r] Hq+r’ (5.13)

[H,, H]=[EpE]=[ ]=0

(in Table 2 we associate the index 1 with H ). The algebra defined by (5.13) is
what we call sl(2) namely each term can be represented by a product
H, = {°H, E={°E, F.={F where H, E, F are a basis for sl(2). However, the
nonhnear Schrodinger equations do not in and of themselves force X, =0,
i=1,2,.... Itis clear that such a choiceis consistent with (5.13) but is not
imposed. The reason that X;=0, j=1,2,... is connected with the second
guiding principle, namely the requirement that equation (5.1) is a member of
an infinite sequence of commuting flows. Before we impose this condition,
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TABLE 2
H,|E | F | H |H, E, F, H, E, F, H,
2 2 2 3 3 3 3 3 3 3
H, 2E |-2F | © 0 2E, —2F, 0 2E, —2F, |-4X,
1 1 3 2 1 3 3 1 2
—-2E,
E H, |-2E, |2E, 0 H, |-2[EX,]| © H, -2E,
1 3 2 2 3 3 2
2F, -H,
F 2F, |2F, |-H, 0 KAFRX,]| -2X, 0 2F,
3 1 1 1 1 2
H 2X, | 2E, ~2F, | 2X, 2E, —2F, 0
3 3 3 3
2E, —2F, 2E, —2F,
H, ["[Exl] _’[FX1] +[E1X1] "‘[F 1X1]
3
H,
E, +X,
F,
HZ
E,
F,
H,

however, we will examine the algebra generated by the nth equation of the

AKNS hierarchy.

(iii) The nth equation pair of the AKNS hierarchy. The nth equation pair of

the AKNS hierarchy can be written
qt" = bnx - Za’nq’
r, =Cp —2a,r
where a,, b, and ¢, are determined iteratively from
"2ib5+1 - bsx - 2as ’
2ic, .1 = ¢, T2ay,

a,, =rb,—qc., s=0,1,...,n—1,

a():_i, b():CO:O.

(5.14)

(5.15a)
(5.15b)
(5.15¢)
(5.159)
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The constant of integration in a, is made zero. We assume and verify a
posteriori that

1. gb,, rc,, gc,, qa,, ra, and a, are functionally independent; rb, = qc, + a,,.

2. gb,, rc; are not perfect x derivatives except when s =2, in which case

iq” ir
qb, = ) r,={-7 -

We want to choose P, Q™ such that (5.14) is the integrability condition

Q" +[O™, P]=P, (5.16)
of the equation pair
V.=PV, V, =0"V (5.17)
Again, it can be argued that we may take
P=—iH+qE +1F, (5.18)
whence (5.16) reads
QL +[Q", P1=(b,x —2a,)E +(c,x +2a,1)F. (5.19)
It is straightforward to verify that we may write
O"W=—q,Hy+b,E+r F+Q" ", (5.20)

where
le—l) + [Q(n_l)’ P] = (bn—lx uzan—lq)El + (Cn—-lx + 2an—1r)F1‘ (5'21)

In order to obtain (5.21) from (5.20) we had to define
[E,Fl=H,, [H,E]=2E,, [H, F]=-2F; (5.22)

note that [b.E+c,F, gE+rF]=—a,.H, and use (5.15a,b) with s=n—1. In
addition, the functional independence of a,q, a,r imposed the condition

[Hy, E]1=2E, [H,, F]=-2F. (5.23)
Now, equation (5.21) is simply (5.20) with a relabelling and so we can repeat
the process and find

3

Q™= 3} Q,+Q%, (5.24)
where o
Qs = _aan—s + bsEn—s + Can—s (5-25)
and

OP+[0?, P]= (b, —2a,q)E, »+(co +2a,1)F, (5-26)
with the following relations imposed. By definition,
[H,E,_]1=2E, 1, [HF,-1=-2F, ., [EF,=H,, (5.27)
while the coefficients of a,,_q, a,._, a,_,, gb,_s rc,._ give for s=n,...,3,
(H.-, E1=2E,, [H.Fl=—-2F,,

5.28
[H, H.-}=[E, E,—]=[F, F,]=0. 28
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From the fact that rb,_;—qgc, s = a,,_;, We find,
[E.—, FI1=|E, F,_]=H, . (5.29)
Using the Jacobi identities, we obtain that for all p+g=n-—3,
[H,E,]=2E,,, [H,F,l=-2F,, IE,F]=-H,,., (5.30a)

and all other brackets of this order zero. The reason that we cannot continue
the table 1s that at s =2 we encounter the anomalous behavior described in
assumption 2. Solving (5.26), we find

. 2
Q¥ =bE, »+ e F,_,— a2Hn+2+% [E, E,.—.]

- 5}; [E,F,_,]+b,E,_,+c,F,_;—iH, (5.30b)
where the new elements are subject to the constraints

q’: [EI[E, E,]I=0, (5.31a)
r*: [F,[F,F,.,]]=0, (5.31b)
q’r: [H, ,, E1=2E, ,—YF,[E E, ]l (5.31¢)
gr*: [H,_,, F]=—2F,_,+E,[F,F,_,]], (5.31d)
q* [E E,_,]+YHI[E E, ,]1=0, (5.31e)
r*: [F,F,._-Y4H,[F F,_,]1=0, (5.31f)
gr: —3[H, H, ,]+[E. F, ,]-[E, ,, F]=0, (5.31p)
q: [H,E]l=[H E,_], (5.31h)
r- [H,F]=[HF,,] (5.31i)
1: [H,H]=0. (5.31j)

Note that when n=2, E, ,=E,=E, F, ,=F,=F and (5.31) reduces to
(5.10). As in the case n=2, the Jacobi identity shows that [H, H,_,]=0 and
that [E, F,_]=[E, F,1=[E.-1, H,_;], r + s=n—1. Just as in the case of n =2,
we can extend this algebra indefinitely, defining new elements according to the

rule
[Hs Er]=2Er+‘ls [H’ F,]=_2F,+1, [E’ Fr]:Hr+1’ rzn—1.

The resulting algebra is infinite dimensional, contains within it the structure of
sl(2) but leaves undetermined the elements

[H' }Ij]) ]é n—1, [Es En—z], [F; Fn—2]- (532)

(iv) The imposition of commutativity. We have seen how each equation pair
in the AKNS hierarchy, taken in isolation, generates, when extended indefin-
itely, an infinite algebra which contains sl(2) as a consistent solution but which
leaves the commutators (5.32) unspecified. It is easy to see that this degeneracy
is removed by demanding that the flows commute with each other. If we ask
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that g, r solve the first two equation pairs in the AKNS hierarchy, then in
addition to (5.16) with n =2, 3, we must have

Q2 - QP +[Q?, Q®]=0. (5.33)

This condition implies that the elements H,, E,, F, satisfy the commutator table
common t0 n =2, 3; namely, we find that [E, E,]=[F, F;]=0 (a requirement
demanded when n=2 but not n=3) and [H, FI;II] =0 (imposed when n =3 but
not n = 2). Therefore, the n =2, 3 tables are sl(2) except the [H, H;], j=2 are
unspecified. Next demand that n=2,3,4 commute and find that [E, E,],
[F, F,}, each unspecified by the n=4 table now are forced to be zero as is
[H, H,]. In general the condition that the flows commute is

QY- Q¥ +[Q¥, Q¥1=0. (5.34)

As we continue the process, we find at the nth stage that the inclusion of the
nth equation of the AKNS hierarchy into the family of commuting flows makes
[H, H,_,], left unspecified by the table common to r=2,..., n—1, zero; also
[E, E,_.], [F, F,_,] left unspecified by r=n are now zero because they are so
for the extended tables of r=2,...,n—1. It is now clear that in the limit as
n— o, the elements H, H,, E_, F, satisfy the sl(2) relations

[H,, E,1=2E,.,, [H,F]l=-2F,.,
[E, F1=H,+, [H, H,]=[E, E,]1=[F, F,]1=0.

The commutators of the element H are the same as those of H,.

(v) Conclusion. We have seen how the two guiding principles, (a) soliton
equations are integrability conditions of systems of lincar equations and (b)
each belongs to an infinite family of commuting flows, lead us to the conclusion
that the natural phase space in which the equations live is a Kac-Moody
algebra. Indeed, (5.34) is the natural framework in which to express the
equations. In the next section, we shall see how these equations can be recast
into Lax form

(5.35)

Q, =[0%, Q] (5.36)

by considering the evolution of Q=lim;_.. {'Q® (where { is the grading
parameter).

It should also be clear at this stage that the requirement that the auxiliary
equations V, = Q®V are linear can be relaxed. The linearity is simply a
consequence of the fact that we can always find a linear representation of si(2).
In this case, it is

T N L e B

We could have used another representation, for example ¢°(v*(d/dvy), v(d/dy),
d/dvy, and obtained instead of the (2% 2) linear systems V, =QWYV, a sequence
of Riccati equations for vy =v,/v, where V=)).
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Finally we remark that whereas the goal of this section has been to
understand the structure of the infinitely extended algebras generated by the
AKNS hierarchy, in practice it is more convenient to construct the artificial
closure. However, one should realize that, having done so0, one must distinguish
between the elements £ _J) and (§ _Y) in the sense that we consider them
to be linearly independent. It is only when one considers the phase space to be
an infinite string of such elements (the formal power series Q=

* 0L (hH+ e,E + {.F)) that the commutator [Q®, Q] of (5.36) has a natural
interpretation as a Hamiltonian vector field.

Exercise Sb.
Try the method on the equation

G +64°G; + g = 0.
Let P=gX,+ X, (show if P= P(q), that P,, = 0) and solve for Q in (5.2),

2
Q= —q. X, + a.[Xy, Xo]-—— q°"'X, +%— [X,, X1+ q[Xs, Xs]+ X,

p+1

(Hint: solve first for Q = —q,. X; + R{(q, q,) and continue R = q [X;, X;]+ S(q)
and so on.) From (5.2) we obtain, on equating powers of g, that X;=0 if
p#0,1 or 2. In this case X, and X, are proportional and writing the equation
as the solvability condition of (5.3), (5.4) merely reflects the fact that it has the
obvious conservation law. On the other hand, when p=1,2, a nontrivial
algebra arises. When p =2, we can solve the commutator relations by the
choices,

X=-4it*>H, X,=E-F, X,=—iH{

What are the possible solutions when p=1?

Sc. Lax equations associated with 37(2, C). The material in this section is a
reproduction of paper II in our sequence on Kac-Moody algebras and soliton
equations. We have seen from the previous section how the natural phase
space for the AKNS system is associated with an infinite dimensional Lie
algebra G =sl(2, C) of formal series

M
X =) X_', M arbitrary but finite, (5.38)

where each element X_; belongs to sl(2, C).
A Lie algebra is a vector space equipped with a commutator; in this case, it 15

(X, Y]=)Y Y [X, Y., (5.39)

i ktj=i

It is useful for purposes of computations to think of each X ; expressed as a
(complex) linear combination h_H+e_E+f ,F of basis elements H, E, F
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which have the matrix representations

A N N

where [H, E]=2E, [H, F]=—2F, [E, F]=H and all other commutators are
zero. On G we define a nondegenerate symmetric bilinear form (Killing form
or inner product)

(X, Y)=Tr(XY)= 2, TrX_,Y_, (5.41)
j+k=0
and through this pairing G can be identified with its dual G*.

In(5.41),Tr (X ;Y ,)may be taken as the trace of the product of X_;and Y_, in
their matrix representations. (Otherwise one can define it as the trace of the
matrices representing the adjoint actions of these two quantities. The two
definitions give answers which are proportional but not equal.) One must also
check the “parallelogram volume” law (X,[Y, ZD=(Y,[Z, XD =(Z,[ X, Y.

We can define the gradient of a complex-valued function f(X) defined on
G* =G as follows. Let §X € TxG (which we identify with G) be an element in
the tangent space to G at X. Then the directional derivative

d
5 X +esx)

~leg=0

of f at X in the direction §X is a linear functional on §X which can be written

(VF(X), X). (5.42)

We call Vf(X) the gradient of f(X) at X. As an exercise, show that Ve, =F_,
Vfi=E_, Vh,=3H_, where F_;=F(, E;=E{ and H_,= H{'.

We introduce the notion of an ad-invariant function f(X) which has the
property

[VA(X), X]=0 (5.43)

for all X € G. This equation expresses the idea that if g is an element of the Lie
group associated with G, the adjoint action of g on X, gXg*, which brings one
to a new element of G, leaves the value of f unchanged. A function with this
property is called ad-invariant. This property can be expressed by the condi-
tion that for all Ye G,

0=2 f(e™Xe ™) looo=(¥£,[¥, XD.

Using the parallelogram volume law, this means that {Vf, X], Y)=0 and the
nondegeneracy of the inner product implies (5.43). Next, consider

K= @ x_,.gf}, N= {}B; X_,-C"} , (5.44)
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of which G is the direct sum. The dual N* of N with respect to the inner
product (5.41) (the minimal set of all elements whose inner product with any
member of N is nonzero) is also the orthogonal complement K* of K (the set
of all elements whose inner product with any element of K is zero),

0
K'=N*= {Z X_,.gf} .
This will be our phase space and I will write a typical element of K* as

Q= i (h.H, +e.E, +f,F), (5.45)
(4]

where H,={"'H, E,={E and F,={"'F.
Now on K7, considered as dual to N, there is a natural Poisson bracket. For
two functions, f(Q), g(Q) on K, it is defined to be

{f, Q) = (o Vf, my Vg1, Q) (5.46)

where m, is the projection of Vf(Q) into N. The reader should check that the
two properties. anticommutativity {f, g}=—{g f} and the Jacobi identity,
{f, g}, h}+{h, 1}, g} +{{g, h}, f} =0, are satisfied. Moreover, to each function
f(Q), Qe K*, there is associated a Hamiltonian vector field

xp = —mea[ e VF(Q), Q1. (5.47)

This means that the directional derivative of any function g(Q) at Q in the
direction x; is given by {f, gH(Q).

Therefore to each function f(Q), there is a flow or vector field. The extra
ingredient we need in order to make the system completely integrable is a set
of functions {f;} which give rise to commuting vector fields {f;, f,}=0. Then,
every member of the set of functions {f;} is conserved along the vector field
associated with any one of them.

Candidates for membership in this class are functions which are ad-invariant.
The Adler-Kostant-Symes theorem tells us that if f(X) and g(X) are ad-
invariant, then it follows that

(@ {f.g}=0on K",

(i) the vector fields x; x, commute.

The AKNS hierarchy arises via this theory from the simplest ad-invariant
functions

—¢,(Q)=%5“Q,Q), j=0,...,%, (5.48)
where S* is the shift,
SY Y X U — ¥ X0
i.e., multiplication by £*. To see this, note that for X e G,
Vo, (X)=—-S*X (5.49)

and it 18 clear that
[V, (X), X]=0. (5.50)
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Next, observe that for Qe K+,

Q, = —wx - VO, (Q), Q)= mg-[ 7k V&, (Q), O] (5.51)
from (5.50),
=[x V@.(Q), Q]
because [ V@, Q]e K* already,
= —{my V®,(Q), Q]=[Q", Q] (5.52)
where
Q®=mS*Q= {"(QO+ aE +%) (5.53a)
with
Q,=hH+eE+fF (5.53b)

These are exactly the flows (3.49) in the AKNS hierarchy. The property of the
ad-invariance of fi was important in removing the projection (mg+) operator
from the outside of the commutator.

The following points are emphasized:

(1) A priori, there is no favorite f, which we need to call x. In-previous
analyses, t; has played the special role; it is the independent variable in the
“eigenvalue” problem. When this choice is made, the AKNS hierarchy results.
But if ¢, is chosen as the special x variable, a different hierarchy results.

A special case of this “new’” hierarchy associated with ¢, 1s what sometimes is
known as the DNLS hierarchy; it includes the derivative nonlinear Schrédinger
equation. On the inverse side, which I will discuss in Section 5k, it includes the
massive Thirring model in that same way that the AKNS hierarchy includes the
sine-Gordon equation. But it is not really a new hierarchy at all; the equation
(5.52), which is written in component form in (5.55), does not change. The
hierarchies are all part of the greater hierarchy connected with sl(2, C): to
paraphrase Rudyard Kipling;

The AKNS thing
And the DNLS string
Are sisters under the skin.

(i) Although the choice of sl(2, C) was motivated by writing the equation of
interest as an integrability condition, once we begin with a given G and a
decomposition into two subalgebras K and N, the flows arise naturally without
reference to any concept such as an isospectral deformation. All iso- this and
iso- that will follow as natural consequences when additional structure of an
analytic nature is imposed. So far, everything is purely algebraic.

(iii) In developing the AKNS hierarchy, the various Q, were expressed in
terms of g, r (here e,, f;) and their x derivatives. (5.52) is a set of equations for
the simply infinite set of variables {h, ¢,, f.} as functions of an infinite number
of times {t;, t,, ...}
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(iv) The result that all the flows of the AKNS hierarchy commute follows
trivially from general theory.

The reader should verify for himself the following facts:

(a) The ®,(Q) are the coefficients of {™* in the series —1 Tr Q*= (h*+¢f)

where h,e, f=3;(h,. e, ).
(b) The Poisson brackets of h,, e, f, are

{h?” eS} = er+s9 {hl" fS} = —fr-l—s: {ef’ fs} = 2hF+S (5‘54)

and all other brackets are zero.
(c) The equations for h, e, f, can be derived either from (5.54) or (5.52)

and are
min (j—1,k)

€y, =2 Z (heix—r—€hisi—,),
0
min (j—1,k)
-ﬁ',tk = _'_-2 Z (hrf;-hk——r —.ﬁ'hf+k—r)1
0
min (j—1.k)
hl',!k = Z (er i+k—r —.ﬁ'ej+k—r)- (5-55)

0

As immediate corollaries, we have that hy, e, fo, h, are independent of all .
We choose hy=—1I, e;=fo=h,; =0 as defining the canonical equations. Note
also that h?+ ef is independent of f, and, consistent with our choice of hq, e, f,
we will take this constant to be —1. From this, the h, are determined as linear
combinations of products of e’s and f’s. The reader should also show that all
the Q. = h H + ¢, E + fi,F can be written as functions of e,(g) and f,(r) and their
x derivatives. For example, e,, =—2ie,, e,, = —2ies—2h,e;, hy=—(i[2)esf;
whence e,=(if2)e,,, e3=—4(ey,, —2eifi). Also note that equations (3.42a)
(the generalized NLS equations) are simply e;, =—2ie; and f,,=—2ifs.
Moreover, we can also write all Q,, k =3 as functions of e, f,, €, f> and their
t, derivatives. As a further exercise, the reader should write equations for e,
f1, €2, f> as partial differential equations in ¢, and t,. Can you find a consistent
reduction (e, =f,=0, f, = xe%) which gives the derivative NLS equation

w, = i, = (uu®),, ?

(Hint: you will need to make a transformation of the form e,
u exp (i § uu™ dt,).)

(d) The connection between the Lie-algebraic framework and the variational
Hamiltonian structure.

Once a special x is chosen, say t;, then we may consider the phase space to
be the differential algebra consisting of polynomials in e, = g, f; = r and their x
derivatives to arbitrary order, together with the symbol a/dx which carries g to
4> 9x t0 g, and so on. This is the phase space which has been most frequently
studied [40], [106] and it admits the following Hamiltonian description. Con-
sider

Hlg 1= [ r g r, . ) d (5.568)

k+1
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and its variational or Fréchet gradient

_8H, 8H,
VH, =—,
K" 8q or’

where
SHk__ 4 . 3 s
z( ) ax a (s) ?

5.56
k+175 (5.56b)

and 8H,/8r is defined similarily. g* is 3°q/ax®. The reader will recognize 8H,/8q
as the partial variational derivative; i.e.

limlHk[q+88q, r]= I%?—Squ.

e—=0

The flows (5.52) can be written as

(q) = JVH, (5.56¢)

r/,
with J=(% ). For a proof of this, see [75]. The Poisson bracket of two
functionals Flg, r], Glq, r] is

{F, G}= J-I VF -VGdx, (5.56d)

where V is the variational gradient. The proof that the H;, defined by (5.56a),
are in involution under this bracket is also given in [70], [75]. In Section 5d, 1
will tell you what the Hamiltonians and conjugate variables are if the special x
is chosen to be ¢, j>1.

For now, I want to emphasize two points. The first is that the soliton flows
generated in the Lie-algebraic setting by the sequence of ad-invariant functions
@, are special if one also demands that the differential algebra interpretation is
meaningful. The reason for this is that if x is to be special in the sense that we
can think of all quantities in K+ like e,, f, etc. as functions of the independent
variable x, then the only vector fields we can allow on K* (which corresponds
to a choice of the other independent variables #, # #x) are those which
commute with x =t,. Therefore, if we want the freedom of choosing any ¢; as
the distinguished x, we must choose as flows in K+ only those vector fields that
commute with the vector field x4 generated by the Hamiltonian &;. In [38], we
prove a theorem which says that the only vector fields which satisfy this
condition are those generated by taking a linear combination of the ®, as
Hamiltonian.

The second point is that in the Lie-algebraic framework, the values of the
Hamiltonians @, (which, for the canonical equations set, we have chosen to be
®,=1, &, =0, k=1) have no significance. On the other hand, the values of
the Hamiltonians H, in the differential algebra framework are important. They
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are the integrals of the conserved densities, the constants of the motion which
can be directly related to the scattering data (the soliton and radiation data
parameters) by the trace formulae (see (3.70), (3.71), (3.72) and [75)).

Exercises and examples. 1 now discuss three examples using the algebraic
setting. The first is the harmonic oscillator, the second is the finite Toda lattice
and the third is a new way of decomposing sl(2, C) so that the KdV and MKdV
families arise naturally without the necessity of making f,=—1 or f,=+e,. [
will show in Section 5h how this new decomposition arises naturally when one
considers alternative gradings of sl(2, C).

Exercises Sc.

1. Take G=5l(2,C), X=hH+eE+fF, {X, Y)=Tr XY. Find a decomposi-
tion G = K+ N such that the general element Q of K* is hH+ eE. The only
ad-invariant function @ up to scalar multiplication is —(h%+ ef) and —V&®(x) =
hH + eE + fF. Show that the Hamiltonian vector field on K+

Q. = —WK‘-[WN V(b: Q] = —[WN vq)) Q]’
which implies that
h'=0, e =2he.

For an imaginary h and complex e, this is the equation for the harmonic
oscillator.
2. Consider the Lie algebra of trace-free n X n matrices

by a, d,
¢ b, a;

X=3e ¢

a1

Ca bn

with the usual matrix commutator and (X, Y)="Tr (XY). Take the decomposi-

tion
0 a d \ b, \
-a, 0 a; d, c;ta, b
X=}-d, —a, .. ) + di+e, c;t+a,
.- a“"—l -
—On1 0 / (NE o T b,./
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where K is skew symmetric and N is lower triangular. X may also be
decomposed into K*+ N*, where K" is the set of symmetric matrices

b, a, 4,
a, b, a,
Q=] 4d, a, .
i a1
a,.y b,
and N* is strictly lower triangular
0
C1—a,
e,—d, ¢c;—a,
- .Cn.—l_an—l 0

While K and N are subalgebras, K* is not. The ad-invariant function
®(a,b,c,de,...)=1Tr X
has its gradient V®(X)= X. The Hamiltonian vector field on K* is given by
Q" = —7g[ 7y V(Q), Q)= mxd 7x VO(Q), Q] =[7x VE(Q), Q].
Thus the equation of motion is Q" =[B, Q], where

0 a 4,
—a; 0 a, .
B=| —d, -
. : - Qn—1

-a,-1 0
Note in particular that if we restrict X to be tridiagonal, namely d =e=+--=
0, Q is symmetric and tridiagonal. Further, B = 7y V®(Q) is also tridiagonal and
so is the commutator [B, Q). Hence the flow produced by the Hamiltonian ®
preserves the tridiagonal nature of Q. Therefore we can make the consistent
reduction to tridiagonal form and obtain a simpler set of equations. In
component form, it reads

b,=2a2-2a2,, r=1,...,n, ag=a,=0,

a,=a/b,.,—b,), r=1,...,n-1.
Let

a,=3expi(u—-w.), b=-lu,
and the equations become

U =etrh—et e r=1.0,0 Up="%, Upy =
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These equations describe the finite Toda lattice (see Exercise 2b(iv) in Chapter
2) with the Oth and (n+ 1)st particles stretched out to the two infinities. The
solution of this system was given by Moser [98] and its Lie algebraic setting has
been discussed in considerable detail by Kostant [99].

3. Consider a different decomposition of si(2, C), G=K+N s.t.

M
N=Y X_A'+e,E+hyH,
1

K=Y (WH+eE+fF) A7 +fF

=1

with the inner product defined® as in (5.41). Then an element Q in K has the
general form,

Q=hoH+fF+ Y (hWH+eE+fE)A™.
i=1

To the set of ad-invariant functions
@, =—(h*+ef)y,

where h,e,f each refer to the infinite strings and the subscript to the A7
component, we assign the values ®,=1, ®, =0, k#1. This means that we
make the consistent choices h, =0, f,=1, €, = 1. These choices are analogous
to the choice h,=—i, ey = f,=0 made earlier in this section. The quantities

Q(k) = _WN Vq’k(Q),
have the form

k=1, —AF+h1H+E,
k=2, —A2F+A(hH+ E+f,F)+h,H+e,E,

k=k, —AF+ A Y (W H+E+fF)+---+A"(hH+eE+fF)

+---+hH+ekFE. (5.57)
Show that the equations
=T
are Q, =[Q™, 4] (5.58a)
(G—1,k)
h‘-"k = €j+k + Z (erﬁ+k—r _fl’ej+k—f) + eifk: (S-SSb)
r=1

i~1,k
ei,tk =2 z (hrej+k—-r - erhid-k—r), (S.SSC)

r=1

(G~1,k)

fio ==2hi 2 Zl (hfysk—r— FBysi—r) — 2, (5.58d)

where the notation (j—1, k) means that we may sum to j—1 or k.

8We will see in Section Sh that this decomposition is entirely natural and corresponds to the
principal grading of si(2, C).
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I will ask you to observe, and in some cases prove, the following.
(i) The sequence ¢; derives from a potential since

d€.1 . 0€ 11

o, at,
In anticipation of what is to come, I will write
__ 0 dln7 _
] aq_l atl 2 I » -

(i) e;=3h,, +ihl,f, = %hl,tl —3h3.
Before we begin the proof, look at the first relation. Do you recognize it at
all?

Proof. From (5.58b,d)

hiy = €t ey fi = 21— 2hyfi
which gives us that
2hyh,, +eifry, =2hi€1—2e1h 0.
A little further calculation show that
hl,tktl =2h1€ 41— 2€ Pt el.fl,tk:
which when subtracted from the line above gives
2hyhy,, —hy . = —2€4f1 = —2f1,, since e;=1.

Hence f, =3h,, —3h} and from e,,, = h,, —fi we have e,=3h,, +3h].
(1ii) h,, as a function of t;,1,, satisfies the modified Korteweg—deVries
equation
h’l,tg =e3t+f,= hz,:l = (_Zlfhl,tltl + %h:l*)tl:
since

—_ 1 - — 1 153
hz—“zfl,:1 hifi1= 4h1,:,:. zh3.

(iv) Corollary. As a function of 1, t,, e, satisfies the KdV equation and
e, =3h., +3h3 is the Miura transformation.
(v} I will leave it to you to prove

e,-,,k = €1€ 4j~1x +--- +eke,-x "e1xek+j_1_ A —ekxej.

Look at (4.13)!
(vi) Ne;,,=—3Me; = NLe, where L, M and N are defined in (3.6), (3.12).
This means that the string

e]- jel R
=) —= Q) — the,=1.
e i§'1 N T with e,

Thus ¢ =—B,_, (recall By=—1, B,=¢/2,...B,,;=3L"q) and from this and
(4.6), we see that the potential 7 defined by ¢; = —(8/0t,_,)((8/0t,) In 7) is indeed
the 7-function for the KdV family.
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(vii) Note that the solution of (5.58a) is Q= VCV ™!, C a constant, with V
satisfying

=Q™vV. (5.59)
From (5.57), we can read off Q®’ and find for V= (v,, v,)7,
Vi, = hivtev,, e;=1, Vo = —AU;— hy0,
and
vy < e\ (v,
(U):(fm S0
where
(k AK ) N £
h( = 2K : , f=ak) =+,
X X XA, f Iy

Note that both v, and v, satisfy the Schrodinger equation with potential
q=—2e,=—hy,—h?% and h,, —h? respectively. Let us rewrite these equations

for
V=04, v, = Uy + hyvy,

whereby we obtain

() =Cavnin o)
v/, \-A+h,+h? 0/\v,

v R —h, e e® )
() = (oo, e mew_po)o)-

Notice that h™®—h,e® = —3e!* and that these equations are precisely the
matrix form of (3.3).

and

5d. Conservation laws, fluxes, potentials and the Hirota equations. A
further and immediate consequence of (5.55) is that

oh, _ ohy 0€; 11 : 0€ f; 1 _ fic 1
oty at, oty ot, of,  dt;

(5.60)

This suggests that the infinite vector strings h, e, f can be written in terms of
three potentials. In particular, we also know from the equations themselves
that since

€1, = —2i€ 1y, fin =20

e, and f, act as potentials for all members in each of their respective strings.
Also we know from previous experience that { h, dx are the conserved den-
sities and so we expect that h;,, will not only be the ¢ derivative of a potential
but also a t; derivative. Therefore, we define a new potential 7(t,, t5,...) by

0 {idln 'r)
== . 5.61
Pt ot (2 at, (5.61)
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What we now want to show, of course, is that

PInt
3t ot

= (5.62)
is a local function of (h,, e,, f;). It is reasonable to call F; the flux tensor. In
reference [38], we obtain an expression for this quantity. It is

i 1[&
P}k = ';— Tr [ ; (] - r)Qer+j—r]+.2— [Zo (l'— k)Qerﬂ'*T]

=(e= 9 z“o)o. (5.63)

The principal idea in the proof of this is to use (5.55) in order to write

ah]+1

a Z( rfk+]+1-r fr J+k+1--r

as a t, derivative. For example, note that fi i1y, = (D) (fisjmry,— Zhisi—f1)-

Each of the two expressions in (5.63) is equal to the other if we
normalize the h, e, f series in such a way that h®+ef = —1. Otherwise, they
differ by an amount which depends on the Hamiltonian ®,(Q). In order to
ensure symmetry, I will define F;, as the symmetric sum but in all calculations
we keep h*+ef=—1 and therefore we can calculate the flux tensor by just
using one of the expressions.

For the first time in the literature, we actually have expressions for the fluxes
of all conserved densities with respect to all the flows:

8h,-+1 a1

o, 8t12 ke (5.64)

It is interesting to observe that the fluxes are most naturally expressed as
derivatives with respect to all the time variables of a single function
In 7(4y, tp, . . .). In other words, the flux of the conserved density h, (whose
integral is the varational Hamiltonian for the NLS equation) with respect to the
NLS flow time t, is best expressed as the second order partial with respect to ¢,
and t;, the time for an altogether different flow, rather than t, and x; ie.
(8fot)h, = (9/ot,)if2 - * In 7/dt, 8ts. It is still possible, of course, to express
8% In 7/9t, 8t; in terms of e,, f, and their t, derivatives but these expressions are
without natural structure and extremely clumsy.

Further, suppose we think of a different 1, as our special x, say t,. This would
be appropriate if we were studying the derivative nonlinear Schrédinger

equation, for example. In that case, the conservation laws are
8 0 dr
at, 2 e,

the conserved densities are F,, and the appropriate Hamiltonians proportional
to | F,, dt,. For those situations when we take ¢ as the special x (in which case
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we write e, fi+,, r>0, as functions of e,, e,,...,¢€;, fi,...,f; and their x =1,
derivatives), the conserved densities are Fy; and the Hamiltonian functions are
. 2i
H{’= F, .q;dt.
k k + 1 k+1§ (]

1 mention here, but do not prove (the interested reader should refer to
reference [38]) that the conjugate variables in this case are not (ey, f),
(€2, fi—1)s - - - » (e, f1) but rather (é,,f),..., (&, f.) where &, f are the coeffi-
cients of {7 in the strings generated by the formal expansions of e/vi—h and
fiNi—h about ¢ =co. For j=1 and 2, the conjugate variables are (e, f;) and
(€1, 2), (e, 1) Tespectively but after that they change.

Finally, it turns out to be more convenient to use ¢ and p defined as 7e; and
7f, respectively as the scalar potentials of the e and f strings.

We have seen how we can replace the triply infinite set of equations
satisfying (5.55) by three scalar equations for the potentials 7, o and p. It is
natural to ask what equations they satisfy. This is a straightforward calculation.
From (5.55)

2i deq e
e 1= =—
k+1 ot

R (0’) i 9 (0’) . &lnrt
— = )=r———~ |+ ie,——.
o, \T 2 Oty 0, 4 \T 6t1 Oty 1

+2he,,

which means

This gives
i
TOT = 5 (C161T— 01Ty — O 1 T1 HOTy 1) (5.65)
where the subscript j denotes the partial derivative with respect to f. Now

recall Section 4c (4.36), (4.37) in which the Hirota operator is defined. Equation
(5.65) is simply

(Dtk —% D,ID,H)U — (5.66)
In a similar way,
(D,k —% DhD,k_l)p c7=0. (5.67)

The third equation is obtained by noting that

becomes
D7 7=—20p. (5.68)
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From these equations, one can readily calculate the multisoliton solutions. In

order to do this, it is convenient to make a change of independent variables
2itk il tk’

(note the “new” time is pure imaginary) so that the Hirota equations become

(Dtk - tk 1)0' 7=0, (5.69a)
(Dtk - tk 1)p T=0, (5.69b)
Di'r - 7=30p. (5.69¢)

We seek solutions in the form

nop= Y D..(uv)exp (z .L,Hr+zv,n,+ Y At

K, =0,1 1s=sr<s=N

N
+ z Arsvrvs + Z Brs,-"rvs)

1=sr<s=N ris=1
where _
Hr =Z gll"tka Hr = ——Z E:'(tka
D _{1 if ¥, =Y v,
" 10 otherwise,
b _{1 ifYu=Yy+1,
°*7 10 otherwise,
D _{—1 ifZMr‘*'lmZVn
1o otherwise,
and
1 -
eBrs= ____-._...._.......—__-_._’ eAr: = —-4 ’ —_ s 2, eAnz -*“4 r'-"-' " 2. (5-70)

For general ey, fi, & bears no relation to . However, when f; =—e%, then
& = (T, the complex conjugate of .
Each of the Hirota equations (5.69) is expressed in the form

P(D,)f-g=0 (5.71)
where P has the properties that
P(0)=0, (5.72a)

P(¢*)=0. (5.72b)
In deriving (5.70), the rule

P(D,) exp (Y. a¥t) - exp (O a1

= P(a¥’ —a$) exp Q. (a® +af)t) (5.73)

is used extensively.
As before, the phase shifts A, A,, and B,, are the same for every member
of the sl(2 C) hierarchy. We can therefore, in a manner similar to that
discussed in Chapter 4, determine all polynomials in this hierarchy once we are
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given the phase shifts. At each level (the level is the sum of the indices in the
Hirota equations; for example in (5.69a), the level is k), there are many (can
you compute how many?) Hirota equations which are compatible with each
other.

Exercise 5d.
Compute the one-soliton solution when

fr=—et:
N=1, ¢=¢i=¢&—in;
H, =2i):, L5t H, Z_ZiZ i AR

- —~ B
r=1+exp (H,+H,+B,,), o=—expH,, exp (—J)=_4.n;

q(y)=

g I-—II—HI) (Hl+ﬁ1+Bu)
_ = 27 exp( ) sech > ,

1 _
E(Hl+H,+Bn)=iZ(g‘:—cfk)rﬁBulz,

1 —
> (H—Hy) =i Y+

Se. The eigenvalue problem, asymptotic expansions and vertex operators.
The goal in this section is to introduce the eigenfunction V(& ; ) and derive
certain of its properties:

(i) its asymptotic expansion about { = co;

(ii) the fact that the phase space Q(1) is an orbit through the element —iH;

(iii) an expansion for { aV/a(;

(iv) the connection between V and the Hirota equations.

The introduction of V(4 ; (). We derived the (2, C) hierarchy without the
introduction of any auxiliary variables. How do these enter the picture? The
answer is very simple. An equation in Lax form

Q,=(Q", Q] (5.74)

immediately invites solution by

QO=VQ,V . (5.75)
Substitution into (5.74) gives us that O, is independent of all t, and
V, =QWV, (5.76)

Conversely, of course, as we showed in Section 3¢, the integrability condition
of the set of equations (5.76) is (5.74). Whereas (5.75) does not solve (5.74)
explicitly, its very form is, nevertheless, useful. It provides the connection with
the idea that the flows (5.74) are reductions of simpler flows on a larger
manifold. We will discuss this idea in detail in Section 5j.
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Asympiotic expansion of V about {=o=. Just as in the case of the KdV
hierarchyj, it is useful to seek formal asymptotic expansions for V(ty, &5, ... ; {)

V~( —éi-b"—Ez_;ff) exp ((—iz C"tk+:,b)H+¢) (5.77)

where ¥ and ¢ are written as an inverse power series in £. The following results

hold: .
!

—b+
el’ r 2

Y, h,b, (5.78a)

m-+n=r
m#0

> Y haca. (5.78b)

m-tnrn=r
m#0

fi=c¢+

These can be rewritten in compact form,

2ie=b(i—h), (5.79a)
2if=c(i—h) (5.79b)
where (hy=—i, h,=0),
h=i—5, e=i£§, f=i£', b=5f£§, c=if;- (5.80)
o 1 1T 1 ¢ 1 ¢
I also leave it as an exercise to show that
b(t, O)= 1 el(tk +‘“_l"2) E}“ €14, (5.81a)
4 2kE*7 &
c(t, C)=lf1(tk_—'i_£)§‘1‘f1_, k=1,2,.... (5.81b)
4 2k& 4
The following results hold:
¢+y=In7_—Innr, (5.82a)
é—¢=Inv,—Inn7, (5.82b)
where
7= T(tk +51£c_'°) = —.-(tk "Eklc—k) k=1,2,.... (5.83)
One can also show that
We introduce the operators
X, (¢)=exp (i ) ("tk) €xp (Z 2,: I 5—?;) , (5.85a)

X ({)=exp (—i Y {"tk) exp (—-Z > ’: Iz %) i (5.85b)



CONNECTING LINKS AMONG THE MIRACLES OF SOLITON MATHEMATICS 175

Remark. We call these operators, “vertex’ operators, by analogy with the
similar looking operator Y({), introduced in (4.124) in connection with the
7-function of the KdV family. In that context, however, when the operator X
(or a linear combination of X(¢) and X(—{)) was applied to 7 or when the
exponential of Y({) was, applied to 7, one recovered another = function.
Although it is straightforward to use X,({), X ({) in a computational manner
in order to construct multisoliton solutions (we do this in Section 5g), it is
difficult to identify the space of functions on which the operators X, () and
X_(¢) naturally apply.

We shall refer to the parts of these operators without the exp (i ) ¢“g)
factors as X,(2) and X (&) respectively. Now, using these results,

i i I+HX. 1 I-HX,%
V~( ———e, E+— _F)( + * )
I=5penEtsh 2+ @ 2 1

But
61+X+T = X+elT = X.._U and fl_X_‘T = X__flT = X,p.
Therefore

X —-—X,0
1 2e° T
V~— ; ¢ . (5.86a)
T
— X_ X,
2¢°7F T
Its determinant is unity because

1 1 T T

v ) )
e 2 \ T+ 4{20'p g 1 2 1

from (5.84). Its inverse, therefore, is

X, 7 — X, o
+ 2 +
\% 1=1 ; ¢ (5.86b)
T “‘z—g Xu_p X_'T

Some commentary on how these results are found is warranted. First, one
substitutes the ansatz (5.77) into (5.76) and equates the coefficients of ",
—oo<<r<k. For r=0, (5.78) follows rather easily. What must be proved, in
addition, is that it is also true for r <0 at which stage the derivatives of iy and ¢
enter the picture. For this, one needs to use the equations satisfied by h,, e, and
f- Of course, it must be true that the expressions (5.78) are independent of
which equations (which # ) we use. Two equations which are useful are

i

7 L emCutfbo (5.872)

m-in=r

h =
or

h=-i—Zi(ec+fb)
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and

Y (enCa—fubn) =0, (5.87b)

m-n=r

which can be written

ec = fb.

Q is on an orbit through —iH. Next, we show that a typical element of the
phase space Q lies on an orbit through —iH.
We wish to show that

V(-iH)V'=Q, (5.88a)
or equivalently that
QV = V(-iH), (5.88b)
where
L
v=| . gVt e, (5.89a)
le 1
> c

is the left factor of V in its asymptotic expansion about { =; i.e. formally,
V=V exp (-—i Z C"tkH) . (5.89b)

Since the right-hand factors in (5.89a,b) commute with H, it is sufficient to

show that
1 i
(h e) 2 2 (~i )
fo-h —lc 1 —;:c 1 !

2
This follows from (5.79) and (§.87).
Notice the equation which V satisfies. From (5.76) and (5.89b), it is

V, = Q®©V+ V(HL"). (5.89c)

We will meet this equation again in Section 35j.

I also point out that if one takes the distinguished x to be , then the phase
space is the differential algebra of polynomials on ey, e5,...,¢€;, f1,...,f; and
their x =t derivatives to arbitrary order. The set {e},..., €, fi,...,f;} when
considered as functions of x = generates the phase space. Since these are
exactly the elements contained in Q®=hPH+ePE+fPF, with h?=
&Y b and e, f© defined similarily, we can consider the phase space to be
QY. From (5.89¢) then, the typical phase space element Q® is written,

Q¥ = V(—iHCi _all_)‘“/—l + ‘A/ti‘n/_l. (5.89d)
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Remark. The use of the word orbit is deliberate and meant to be suggestive.
If every element X of the phase space, which is the dual G* of a Lie algebra
G, can be generated by the coadjoint action X = gX,g ' (in matrix representa-
tion form) of elements g belonging to the Lie group G through an element X,
of G*, then we know that the phase space is a symplectic manifold and has a
nondegenerate two-form. For example, if we take x =, to be a distinguished
element and take the phase space to be the function space of the pair e (x; 1. ),
f1(x; t.), then the phase space is a symplectic manifold with two-form [, e, A
8f, dx (see [75]). For distinguished element x = ¢, the phase space consists of
the conjugate function pairs (€,, f;-), ... (&, f,) defined in Section 5d and the two-
form is

20

j (88, A8, +. . .+ 88, A Bf;) dt.

One can interpret (5.89d) (A. Reyman; private communication) as a statement
that the phase space is a coadjoint orbit through the element —iHZ' — o/,

Exercise 5e. (Important.)
Consider the Lax equations (5.58a) of Exercise 5¢(3). They, too, are solved
by introducing V(t, A) by setting

AQ=VCV (5.90a)
where C is independent of 3 and V satisfies
V, =Q"V. (5.90b)

The Q™ are given in (5.57). The C in (5.90a) is (—iH{) if we take

—1
1 v(t, =) ?U(tka 0)
V=—1 . (5.90c)
V2 —i
Ux (tk) _C) z- vx(tk’ {)
where £*= A, v(t, £) is the v satisfying (3.1), (3.9) (in Section 3b, the time
labelled t,,_, corresponds to the time labelled f, in (5.58a) and above) with
asymptotic expansion given by exercise 3b(iii).

vlt, &) ~exp (i{? z\"_ltk)'r(x—ltlg, tz—gilg—:,, .. ) X (5.904)

7(ty, to, . . .) is the r-functions of the KdV family. The reader might check
(5.90a) in the vacuum case where g =0. Now (5.90b) may be written as
V=Vexp (—i ) gzk_ltkH) , (5.90e)
1

where i o
V, = Q®V+ V(IH{* ™) (5.90f)
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or, solving for Q®,
Q¥ = V(—iH{* )V 1+ V, V1, (5.90g)

The reader should also note that, if we take

A~ 1 Af1 i

V=7 U(— ic 1 {) ’
equations (5.90f,g) for U change only by replacing —iH{% ! by XA* where
X=—F+EJ/A.

Further remark. Formulae (5.88a), (5.90a) are important as they appear to be
one means through which the link between the two roles of the Kac-Moody
algebra A{" can be established. The reader will recall that in Section 4g we
discussed how A{"” was an algebra of symmetries and that solutions 7(t;, ts, . . .)
of soliton equations of the KdV family formed an orbit through the highest
weight vector (7= 1) in some basic representation of A", an orbit defined by
the quadratic Hirota equations. On the other hand, in the present chapter, the
algebra is the phase space. We will see in 5j that formulae (5.88a), (5.90a) arise
very naturally as the coadjoint action of the Kac-Moody “group” on a special
element £ (which is either —iH or X=—-F+(E/{)). We will also see in the
subsection after next how (5.88a) contains the Hirota equations.

An expression for {(0V/o{). In Section 51, we indicate why the operator
D = {(8/8¢) is an important element in the whole theory. Therefore it is worth
calculating

1 o 1 dln
4r* ot  2L* ot
From (5.91a), it is a straightforward exercise to show that
olnt

o

The term —i¢{'H is V&;(—iH) which is the gradient of the Hamiltonian &,
calculated at the point —iH. Equation (5.91b) is the formula by which the
Kyoto group define the 7-function [391. In proving (5.91), we use the facts that

5562 b +5fci2'?)= C %5%)’("‘ +21:c'°)’
Db=—e,= —e(t,c +ﬁ) ,

i

De=—f-=f{1-5.7),

DVV™= (Z kL, — 7)Q+%(eE— fF).  (5.91a)

(VIDV, —it'H) =

(5.91b)

and also (5.79) and (5.84).
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The connection with Hirota. et us take another look at (5.89) and write it as

] 1
X 7 —LX+0‘ X7 —=X,o

Gl 2 H LG

5 X p X7 2 X_p X7

which leads to the four relations

(i+hX_ 7= *—2—2- eX_p, (5.92a)

%(1 +ih) X, 0 ={eX,T, (5.92b)

3A+ih)X_p=feX_7, (5.92¢)
; __t

(i+h)X,v= 27 X, o. (5.92d)

Let us again prove (5.92b) in a way that helps improve one’s manipulation with
vertex operators. Since o =e,7, then it is also true that X.o= X.er=
X+elX+fr (an obvious property of the shift part of the vertex operator)
X, 7= (2ieg/(i—h))X,+. Multiplying by the exponential factor exp (i ¥ £*t,)
gives 1/2(1+ih)X, o = {eX 7, which is (5.92b). But these are also the Hirota
equations. Expand (5.92b) using

2
—(1+m) iyl .

4 § oty atk 1
iy 1 de o, 1 O 17— a*rk 1
e=e + =—+ ,

and

~ i 1/i L 1 i 1 i
X+o'=o-+—2—cal fz 0'2 8O 11 €3 0'3 8012~ 480111 +--

We remind the reader that subscripts on 7, o, p denote partial derivatives. The
coefficient of {72 is .
i
(D'2_5 Di)o‘ -7=0.

The coefficient of £ includes the equations

i
(D,3——2* D,lD,Q)O' -7=0
and
(D, +5iD)o - 7=0.

The higher order balances appear to include all the equations
P(D,)o-+=0

in the Hirota hierarchy. I do not have a proof of this.
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Another more powerful way of deriving all the Hirota equations is to use the
following identity,

— | varyovie-y =1 (5.93)
2ri C

where C is the circle at { = in the anticlockwise direction and x = (xy, X5,
X3, - . .), (x; =1;). This form was suggested by a similar expression used by Date,
Jimbo, Kashiwara, Miwa [39] for members of the KP hierarchy. I find their
proof too intricate to understand. The best way to think of (5.93) is to appeal
to analytic arguments and think of (5.93) as being an expression of the
completeness of the eigenstates of Vi = Q™ V. For a discussion of this prop-
erty, the reader should consult the third reference in [23], appendix 6.

In any event, (5.93) tells us that the {~! component of V(x+y; )V i(x—
y; {) is the identity. Using (5.86), (5.87),

i i
X ——*X+ X, — X5
1 T 2 1o » ) T 27 o
V(x+y)=F ; , V (x—y)z; ; ;
—-—-X* X7 —— X_ X_
2 T 20 7P !

where the superscript on the vertex operator means that the argument has been
displaced by plus or minus y; i.e.

+ ] . i
XZr=exp (—i(x,+y)— lfz(xz"*‘ Ya). . -)T(xl ty,— 2‘: » Xt y,— 442, -- ) .
Thus,

T 7T V(x+y, OV i (x~y; §)

XX, 1———3 XtoXp —z—lc(XIaXZT—XIGXfT)

4(2

—Z(X+pX+7 Xi1X“p) Xiz=X_ T——EiX+pXIG

I invite you to expand the 1/ of each of these terms in a Taylor series in
Y= (y1, Y2, - . .). You will find that the coefficients of y,, ys;, y; are nontrivial
and equating them to zero gives the Hirota equations.

I will expand the (1, 2) element as our example. It is

exp (Zi Y ckyk)o(xk + Vi +2—,:-;:r)7("k L ‘2_1:5)

—€exp (_Zi Z CkYk)O'(xk — Yk +2—kiéii)7(xk + Yie —ﬁ)

and we seek the Z° component. The second term is obtained from the first by
changing y. — —yi. Therefore all terms even in y automatically vanish (y3,
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Y1¥2, Y1Y3 €tc.). First, a little calculation shows that

i i
"("" ARCR 2kg'<)"(x" e Zkyk)

= o(x)7(y)+ Z (Yk )ch T

2kL*
1 i
W] (y“+2kg")( ZgJ)D“DU 4

3L O+ 325) v+ 35) () Pre
b

where D, is the Hirota operator (4.36), (4.37). Multiply this expression by
exp (2i Y. Z¥yy), take the Z° component, then set y, — —y, and subtract the
latter expression from the former. One finds

yi: D,—D,,

Var % D,— ; D3,

Va: %— D3——Z—i1 DD, +2l4 D3,
yi: % D3~%i D1D2~% D3.

Setting these to zero gives us

(Dz—% D%)a cr=0,

(D3__;'D1D2)U' . TZO,

(Ds+3iDY)o - 7=0.

The reader can develop a more fancy notation and obtain expressions for the
Hirota polynomials in terms of the Schur functions p,(x,, x5, . ..)

kx kX + Z (xl, Xqs - - )
0

One can also count the number of Hirota equations at each level [39]. At level
n, there are the same number N, of equations as there are decompositions of
the integer n into a sum of odd integers n;+n,+--- +n,, each n,=n.

5f. [Iso-spectral, iso-Riemann surfaces and iso-monodromic deformations.
(1) Iso-spectral deformations. Up to this point in the present chapter, all
considerations have been local in the sense that we interpret the equations
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W(x, ¢) (the second column of W) with the states —¢, ¢, the second and first
columns of ® and W respectively. The reason for this is that the former can be
associated with outgoing radiation and the latter with incoming radiation. As
an exercise show that

(W, —d)=($, ¥)S, where S=

Do Qm
D= 2oy

The time dependence of A({, ;) is found by substitution (5.97b) in (5.96)
A, =[V;'QJV,, Al (5.98)
In the hierarchies we consider,
Vo lOPV,= —il'H.

In particular, (5.98) has Lax form and the diagonal elements of a({) and a(¢) of
A are constants of the motion. Now it can be shown given . (le,l, |fi]) dx <es,
that

a(Q)=W(g ), alQ)=wW(,¢)

can be analytically continued into the upper and lower half { planes respec-
tively. But if Im ¢ >0, then ¢(~ @)e ) and ¢(~ (D)e'™) are the only solutions
which decay at —oo and +oo respectively. Thus if £ is such that ¢(x, §)— 0 at
x = +oo, then

d)(x’ C]) = bjd’(x’ g])

and a(g)=0. Similarly the zeros { of @(Z), Im £ <0 give rise to the bound
states ¢(x, &) and ¢(x, §); d(x, §) = bp(x, ).

Therefore, the spectrum of (5.95) is preserved under each of the fiows (5.52)
in the hierarchy. As in the case of the KdV equations studied earlier, the
eigenvalues {;, {; are associated with the soliton component of the solution. 1
also point out a fact which is repeatedly used in developing soliton solutions (as
in Section 3h or in the following section on Bécklund transformations). It is
that at an eigenvalue £, the columns (¢, ¢) of a fundamental solution matrix are
proportional.

In the cases where f, = —e?¥, f,=—e, (r=—q"%, —q in [23]), certain simplifica-
tions occur. In particular, in the former £ ={% and in the latter {;=—¢; In
paticular, if f; = —e, are real, then the eigenvalues are purely imaginary = in;
(solitons, kinks) or arise in pairs (§, —{%) (breathers or bions).

The inverse problem is straightforward and we give a brief summary of the
results here. For more details the reader should refer to [23]. What we want to
do is reconstruct @ or ¥ from the scattering data. A knowledge of these
functions will give us the Q% and in particular Q, = e, E + f,F. The easiest way
to obtain Q; from ®, ¥ is to calculate the 1/{ term in their asymptotic
expansions about { = (see previous section).
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Consider the function (¢(£)/a(£))e*™, meromorphic in Im £ >0 with asymp-
totic behavior (}) as &— there. It is connected to the function (&)e®
analytic in £<0 and having asymptotic behavior (}) as |&— o by
(b(&) a(ENY(&)e™™ (simply write down the equation for the first column of
® =T A) across the real axis. We therefore want to solve the Riemann—Hilbert
problem of finding a function, analytic for all £ except at a finite number of
poles with prescribed behavior as £ — oo, given that it possesses a prescribed
jump across the real £ axis. The construction is accomplished by considering

for Im { <0, o .
J‘ d(§)e™
Lo a(€)(E— )

and computing its value twice, first by closing the contour on the semicircle at
&=oo, Im£>0 and then by replacing ¢ by ayr+ b and computing the first
integral by closing in the lower half plane. One obtains

- iLx _ itx 1 J.m b‘!feigx
w0 =)+ 147 LGP BTy b
where ¢ =(g), v, =b(a) ™, aj=(da/dl) at L=, j=1,...,N, the N zeros
of a({). Following a similar prescription, we can find an equation for
P(Z, x)e ** (Im ¢ >0) linear in ¢. It is the fact that the jumps across the real {
axis are linear in ¢ and ¢ which makes the inverse problem linear.
If we are dealing with reflectionless potentials, b=b=0 and the equations

for ¢, i, &, ¢ are

dé

(L, x)e™ = ( ) Z 'Ygl" C, Im £ <0, (5.992)
(L, x)e = = ((1}) -2 3’—"2"—"_? Im ¢ >0, (5.99b)
e ve==(")- Z b — :’ Im £ <0, (5.990
S, x)e' = (O) Z 3’;” Zx Im >0, (5.994d)

where B; =b;(a)™, B =bi(@). Let =¢ in (5.99a,c), and £ = in (5.99b,d),
and then the resulting linear equations for iy, J,- are easily solved. The
determinant of the coefficient matrix is the 7 function up to multiplication by
exponential factors with phases linear in .

The reader should solve the one-soliton case corresponding to the pair £, £,
If r=—q*, then Z, = {* and the solutions are

=21 sech @ exp id, fi=—e%,
0=i Z (Cllt_ffk)tk +21x,,
¢ =— 2 5+ o

where the position parameters xo, ¢ are related to the coefficients b;, b; = b*.

with
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The property 1 want you to remember, however, is the structure of the
fundamental solution matrix. Notice that each of the columns ¢ and ¢ has a
finite number of poles independent of x, ¢,k =2,.... We are free to renor-
malize the fundamental solution matrix by multiplying the solution ¢ by
NIV (€ &) in which case e has the form

1) - 1

+2, —=C

(0 Zl: S

Similarly e can be renormalized to be a polynomial of degree N in inverse
powers of {. This normalization can be accomplished by multiplication of V on

the right by (F'gg)r::(]g)).
Conversely, just as we did in Chapter 3, one can show that if we take

V = (ub “Z)T,

s Cu)exp (i X 24
—1;:Czk) exp (i X¢ "tk), (5.100a)

u,(a) = buy(a) (5.100b)

for a =y ...l L1y oo i), b=(by,...,bn, by,...,bx), then the column
vectors of V satisfy

—ifx

with

V, = QV. (5.101)

The elements of the coefficient matrices Q' are related to Cy, C, and their
various derivatives. For example,

i N i i
Ca=(5en—3]en)  Ca=([ehust)

(see Section 5e). The integrability of (5.101) insures that e;, f, satisty the
AKNS hierarchy.

The proof of the proposition that (5.100a,b) implies that (5.101) follows
the uniqueness argument given in connection with the KdV family in Section
3h. First, note that the 2(N + N) equations (5.100b) determine C,,, C,;, uniquely
as functions of x, t;= 2. Next, consider the vector quantities

W; = (V)1 + 18U — €102, Vjo, — icviz“_flvil)rra
with v; = (v, v;2)", j=1,2. A little calculation shows they have asymptotic
expansions
i | Noq
Lowde X _k
1 c 1
respectively and moreover w,(a)=bu,(«). Thus the vectors v,+u;, v,+u,

satisfy all the conditions (5.100), (5.101). But the vectors satisfying these
conditions are unique (we can calculate the C,,, C,, explicitly) and hence
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u; =u, = 0. Therefore, the vectors v, and v, satisfy (5.101) for j = 1. The proof
for general t; follows similarly.

(ii)) Iso-Riemann surface deformations. In Section 3h I showed you how the
finite-gap solutions of the KdV family were associated with a Riemann surface
which does not change in time, so it will only be necessary to give a brief
review of the situation here. Consider the further constraint

Z wV, =yV (5.102)
1
added to the list (5.76). This can also be written
(): u,-Q""—y)V=O, (5.103)
1
so that a nontrivial solution exists only when
det (): u,Q9— yI) =0. (5.104)
1
Equation (5.104) is an algebraic curve (for ;f(2, C) it is hyperelliptic)
2 __ < (3]
y2=det (): wQ ) (5.105)
1
Cross-differentiation of (5.96) and (5.103) shows that P =Y} u,Q® satisfies the
equation :
P, =[Q%Y, P] (5.106)
which means that P can be written
P=VP,v 1, Py, =0. (5.107)

Hence the characteristic polynomial of P is equal to det (P,— yI) and therefore
independent of all the times. In addition, from the compatibility of (5.102) and
(5.76) (just cross-differentiate with respect to f and use Q¥ +[Q?, Q®]=
Q¥), n
YuQP=0, k=1,2,.... (5.108)
1

Thus (i) implies that each Q™ is only a function of (n—1) linear combinations
of the t,,...,t, and (i) means that in particular Q¥ satisfies a nonlinear
ordinary equation in t, = x because e,, and f,, can be written as functions of
€5, f1 and their t; derivatives. The finite dimensional solution manifold of this
equation is left invariant by each of the flows in the whole hierarchy Q, =
[O?, O]. This means that a solution of

2 QP =0 (5.109)
i

at time zero, if allowed to evolve in any of the time fiows, will continue to be a
solution of (5.109). Equation (5.109) is often called the Lax—Novikov equation.



CONNECTING LINKS AMONG THE MIRACLES OF SOLITON MATHEMATICS 187

Solutions of (5.109) as well as their time evolutions can be constructed
explicitly and we demonstrated one way of doing this in Section 3h. They are
Abelian functions. A method of construction which uses the theory of Riemann
surfaces and the uniqueness of functions with certain properties defined on
them was given by Krichever. 1 will not go into his ideas here but instead refer
the reader to his papers [28].

(1)) Iso-monodromic deformations. Suppose now that instead of the con-
straint (5.102) one were to apply the constraint

LV, =2 iV, (5.110)
1

to the set of equations
V,=Q%V, j=1,...,n (5.111)

The integrability conditions are now
X Q5= 10— kQ®,
1

which can be written

Y itP, =P, (5.112)
1
where
Q(k) k
P = gk = Z Qrc_ri Qr = h,.H+e,.E +f,.F.
QO

The coefficient of 1/{ gives us that
(xQ) + 2. jt01, =0, (5.113)
2

which is the analogue of (5.109). What it means is that Q, is a function of the
form

1 = X X
G ) G119
with n—1 phases.

Now, what motivates the choice of constraint (5.110)? The idea is that it
reflects scaling symmetries which certain equations in the hierarchy possess in
exactly the same way that the choice of finite gap constraint reflects transla-
tional symmetries of the equation (you might wish to refer to Section 3h). To
make this more concrete, I will focus attention on the MKdV hierarchy which
is a subset of the merarchy of equations

Q, =[0%, O] (5.115)

obtained by setting f; = e, =q and disallowing any flow in the even times t,,.
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The first three members of the sequence are

G, = Gx> (5.116)
a, = —4(4 —66°q.)., (5.117)
i, = 16(Gxox — 10976, — 10943 +64°),, (5.118)
and corresponds to
QW= (:;g :2) (5.1192)
4 iq° i1{q,
—lfs"ﬁz-c {*q +€—;—%(qn—2q3)
Q¥ = . . 5 (5.119b)
2 _%_.A —2q° -3 }_q_f
{q > (0= —2q97) i+ 2

I will leave it as an exercise to the reader to calculate Q. Note that (5.117)
has the scaling symmetry that if q(x,t) solves (5.117), then so does
Bq(Bx, B3t;). A solution §(x, t) which is invariant under this scaling is called
self-similar and it means that

d
£ Bq(Bx, B7ts) [g=,=0
or
q+xq, +3t3q,, =0, (5.120)
which is exactly (5.113) with n =3. Thus g(x, t;) has the shape
75~ Go)
B =——apAX="T"55]- .
Q(x t3) (3!'3)1/3 (3t3)1"3 (5 121)
It is natural to change variables in
V,=Q"V, V,=Q®V (5.122)
to
X=—>0 T=t (5.123)
@B '

in order to reflect the structure of the coefficients of Q¥ and Q®. We find that
V(x, ts; {) rescales as W(X, ) where &£=(3t;)"" and that the equations
(5.122) become

Wy = (_fi‘E é)w (5.124)

—ig>—if? £ iX¢t Ef+ithj2+v
2
EW, = ¢ W. (5.125)
Ef—ithi2+v i +if? o+ iX¢
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The integrability condition for (5.124, 125) is
fxx =4Xf+2f3~w, (5.126)

which, if g is given by (5.121), is (5.117) once integrated with respect to X, and
v is the integration constant.

Equation (5.126), which describes the self similar solution of (5.117), is the
Painlevé equation of the second kind (see [35], [36] and Section 4¢). It is a
nonlinear, nonautonomous equation which is left invariant by the flow. For
example, choose an f(x) satisfying (5.126). Take t;=3. Allow q(x, t;) as given
by (5.121) to evolve in (5.117) for a time 3<t;<t. Then at t; =1, g(x, t) has the
form (5.121) where f(X) again solves (5.126) except that X is now x/(3t)"*.

More generally we state that the class of solutions consistent with the
constraint (5.110) have a multiphase self-similar structure and satisfy a non-
linear nonautonomous ordinary differential equation in x, namely (5.113), with
coeflicients depending on x, t,,...,t, Further, the solution manifold is left
invariant by the flows Q,,, j=1,..., n in the sense that a solution of (5.113)
at 19, ..., 15, if allowed to evolve with the flows Q,,, j=2,...,n till times
tr,.-.,t, will again satisfy (5.113) with t°,...,? replaced by the present
times t,, ..., t,. Unlike the finite gap solutions, however, these solutions are
not, repeat not, left invariant by higher flows Q,, j>n in the hierarchy.

Now, how does one solve the initial value problem for (5.126) given f, fx at
X =X,. In the inverse scattering method, you will recall we focussed our
attention on the ‘“‘eigenvalue” problem

V,=Q"V

and used the second equation in (5.122) in order to determine the time
evolution of the scattering data. For solving the nonlinear autonomous ordi-
nary differential equations associated with the finite gap solutions, we focussed
our attention on the constraint

(Z u,-Q‘”-yI)V= 0,

and used the eigenvalue problem and the other equations V, =Q%V as
auxiliary equations for determining the x and t; dependence of the u’s (see
Section 3h).

Here, we again focus our attention on the constraint (5.125) and use (5.124)
as an auxiliary equation. Equation (5.125) looks complicated but, when consi-
dered as function of £, it is really very simple as all the coefficients are rational
in & There are two singular points, one regular at £ =0 and the other irregular
of rank three at £ =oco. It is known from the theory of ordinary differential
equations that the structure of the fundamental solution matrix is completely
characterized by its behavior in the neighborhood of its singular points. In
particular, this behavior is measured by the monodromy matrices which tell
one how the fundamental solution matrix changes as the solution traverses a
contour surrounding the singular point.
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Next £ =0, (5.125) has a solution of the form

d(¢; X)=d(¢; X)(g(;v ;) (5.127)

where & is analytic in £ (for »=half integer, there will, in general, be
logarithms in the general solution as well). The monodromy matrix J at £=01is

D(ge®™) = D(E)], (5.128)
and J has the form
e—Z'n'iv 0 )
J= , . 12
(2 T Jl ez-mv eZ-mv (5 9)

where J, is only present if » is a half integer. For v =3, J, = 2(fx + f>+2X)e 2,
ux = f. Note that J,5 =0.
Near £ =<, (5.125) has a formal fundamental solution

—0

B 30 =¥ X)(e0 f) (5.130)
where 0 = i£X +i£%/3 and W =Y} ¢ is a formal Laurent series. In each sector
S;, (71/3)(i — 1) = Arg £ = (m/3)], there exists a true solution ¥; for which (5.130)
is an asymptotic expansion in S;. However, as one traverses the point at «, one
meets the Stokes phenomenon. Namely, as one crosses from S; to S, at
Arg £ = 7i/3, the analytic continuation of the asymptotic expansion in S, is no
longer the asymptotic expansion of the analytic continuation of the true
solution. One has to multiply the true solution ¥, by a “Stokes” matrix of the
form

1 0
A, (al 1) , (5.131)
to get a new solution ¥, whose asymptotic expansion in S, is (5.130). What
happens is that the recessive solution in S, (i.e., the solution proportional to e®
which decays exponentially) becomes the dominant solution in S, but a certain
amount (a,, the Stokes multiplier) of the recessive solution in S; must be added
to the dominant solution there in order that the combination is recessive in the
next sector. The fundamental solutions ¥; with asymptotic expansion (5.130)
in the six sectors of infinity are then related by

Wi =WA; (5.132)

where the nonzero off-diagonal elements in A; (the Stokes multipliers) alter-
nate between the two corners. The particular details are all worked out in
reference [36].

The set of matrices J, A,, ..., Ag together with the connection matrix A
which specifies the relation between the fundamental solution & normalized in
a certain way at £¢=0 and ¥,, &=V, A constitute the monodromy data.
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(Because of symmetries, there are if v is known only two independent parameters
in all this data corresponding to the unknowns f and fy.)

Now we can state a remarkable result. As f(X) deforms according to (5.126),
all these matrices are independent of X. Hence the term iso-monodromic
deformation. The solution to (5.126) may then be obtained as follows. Given f,
fx at X = X,, compute the monodromy data. Then at some other X, given this
data and 0 = i£EX +i£/3, one can reconstruct ¥; and hence the coefficients in
its formal asymptotic expansion, which coefficients depend on f(X) and fx(X).
Therefore, one can find f at any X. The details of the inversion procedure and
some information about the solutions are given in [36].

I will end this section by remarking that the operator &d/d¢ is very important
in the whole theory and not just in connection with self-similar solutions. Some
comments on its role are given in the last section.

S5¢. Gauge and Biicklund transformations. We begin with a theorem which
states that under the transformations

0% > RQ®WR™! +Rth—1 = é(k), (5.133)
0—ROR'=G. (5134

the equation
Q- QP +[QP, Q*1=0 (5.135)

and its limit
Q, =[Q%, Q] (5.136)

are invariant. The proof is straightforward. This choice of transformation is
motivated by noting that (5.135) and (5.136) are the integrability conditions for
the sequence of equations

vV, =Q®V (5.137)
and (5.137) remains invariant under
V—-RV=W (5.138)

provided (5.133) holds.
In addition, it is also useful on occasion t0 normalize V by adding to the
right-hand side of (5.137)

V, =Q®V+VN®, (5.139)

The integrability condition for (5.139) is exactly (5.135) provided the curl of
the vector string N® is zero; i.e.

N®=N®, (5.140)

(You will remember that we choose NV'=0, N® = it*H for k=2, in order to
ensure that V at —e had asymptotic behavior

e’ ™ 0
Vo= ( 0 eic") ;



192 CHAPTER 5

see Section 5f(i).) The addition of a normalization N® can also be accom-
plished by a transformation on V,

V- RVS=YV, (5.141)
and it is easy to show that
N®=871§,. (5.142)
The condition (5.140) is then satisfied if
[N® N®1=0. (5.143)

Observe that the transformation (5.134) on Q does not involve S. This is
because the multiplication of V on the right simply amounts to a change in
basis of the column vectors in V. The transformation (5.141) with condition
(5.143) together with (5.133) and (5.134) is called a Gauge transformation. But
look at (5.134). We know that if Q satisfies (5.136), so does Q= ROR™'. But
equation (5.134) is just an infinite set of relations between the variables
{h,e,f} of Q and their corresponding counterparts {f, &, f.} in Q. Hence
(5.134) is an auto Backlund transformation between any two members of the
sequence of integrable equations associated with sl(2, C).

So far we have said nothing about R and $ except that they should be
invertible. How are they to be chosen? We have already noted that § plays no
substantial role. Therefore everything depends on how we choose R.

First, note that R has the property, easily deduced from (5.133), that

% det R =(Tr Q®—Tr Q) det R =0,
k

because Tr Q® is independent of ¢ and from (5.134), so is Tr Q. Therefore
det R is independent of 4 and can only be a function of . Let « be a zero of
detR and assume 1t 15 not a zero of detV. Then det V(a) =
det R(a) det V(a)=0 and the columns of V are linearly dependent at ¢ = a.
Now recall from the discussion at the end of part (i) of the previous section,
that this is precisely the condition that V has a bound state at o. We know that
the addition of a bound state pair at ¢, @ corresponds to the addition of a
soliton. On the other hand if det R has a pole at «, then we note that the
inverse transformation V=R~V creates a new fundamental matrix V with an
extra bound state parametrized by a.

In summary, then, the zeros of det R are associated with bound states of Vv
which are not contained in V. A bound state pair is associated with the
addition of a soliton. More complicated functional forms of det R are as-
sociated with the addition of more complicated solutions which are beyond the
scope of these lectures. There is, however, one other simple class of Backlund
transformations associated with det R =constant. They are transformations
which change the monodromy of the fundamental solution matrix at { = and
are known as Schlesinger transformations [125]. They play a central role in the
story I am about to tell you.
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Let us now get down to concrete cases by illustrating these ideas with several
examples. The immediate goal of the section is to write formulae for the new 7
functions 7, @, p in terms of the old ones 7, o, p. We will find out, however, that
it i1s better to think of each triplet as three successive entries in an infinite
sequence.

The first example is well known (although you probably have not seen it
approached in this manner before) and attempts to add to the solution Q one
extra soliton. Again I remind you the signature of a soliton is contained in the
structure of the fundamental solution matrix. Its columns become linearly
dependent at values of { corresponding to the soliton parameters. By use of a
transformation in basis (of the columns of V) via an S transformation, this
criterion can be stated in a completely equivalent way by demanding that the
first column of RV vanishes at [=¢; and the second at the companion
eigenvalue {,. Recall the brief discussion in Section 5f of the scattering
problem for the Zakharov-Shabat eigenvalue problem. For general r and g, the
eigenvalues come in pairs, ¢, Z, the zeros of a{l) and a({) respectively in the
upper and lower half planes. If f, = —e¥ (or r=—q*), then ={*=¢—in and 7
and £ are the amplitude and speed of the soliton envelope. For the purposes of
our discussion here, we will take r =—q in which case if ¢, =in, {; =—in. The
calculations are simpler and the result is one already familiar to the reader
from Section 4f. Let

{+d+a b ) (Vu Vlz)
o= v (U ),
C §+d_a V21 V22

It is not hard to show that the condition that

Vu) . (V21) .
R( =0 at{=Iin, R =0 atf{=-—in,
Var ¢=im Ry,

leads to the following values for a, b, ¢, d:

L _ 2y B
a=in 1447 b—c—1+y2, d=0, (5.144)
where (recall the notation used in (4f))
L Vzl(i"]) _ sz("i‘ﬂ) (5 145)

YT Vll(i"'l) B Vi2(—in) '

The latter equality is true because we know from Section 5f that if Vi(x, ),

V,(x, £) solve the Zakharov—Shabat equations so do V,(x, —{), —V,(x, =&) if

r=—q. Having calculated R, let us now use the Bicklund transformation

(5.134) in order to calculate the new strings h, &, f in terms of the old ones h, e, f.
A little calculation shows that if

(" Do) oo(f S ool
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then (5.134) can be written
h—h a(h—h)+b(f—&)
l;(é~e) =( a(@+e)-bh+ h)) . (5.146)
f—f —a(f+f)+bh+h)

Recall that hy=ho=—i, ey=fy=&,=f,=h, =h;=0. Equating the {° coeffi-
cients, we obtain,

- . Any
&,—e,=2ib =I+"—72 : (5.1472)
= . —4ny

—_— - — —_ .147
fi-fi=-2ib=77, (5.147b)

which tells us that, since f,=—e, that f;=—¢,, that is, we remain in the
solution class. Let e, = —u, /2, &€, = —i1 /2 and vy = tan (u + i1)/4 whence (5.147a)

uti
2

a distinctly familiar result (see Section 4f). The coefficients of the higher powers
of { give us relations between h,, &, and f, and h,, e, and f, and, recalling that
e, = (if2) de,/dt,_,, we obtain all the Bicklund relations for the flows in the
modified KdV family. In this example, we of course must keep t,,n=
1,2,..., fixed as otherwise we flow out of the class f,=—e;. Therefore the
expressions obtained from equating the coefficients of odd powers of { are
satisfied automatically and do not give us new Bicklund relations.

They have one important role. You may have asked how I was able to
choose y =tan (u + @)/4, above. Strictly, this does not follow at all from what I
have told you. However, if you look at the coefficients of £ in (5.146), you will
find that

W, — i, =4m sin (5.148)

52—"62 = a(él+el). (5.149)
Now differentiate (5.147a) with respect to x or t; and multiply by i/2. One gets
é2 —€x2= i'n COs (bd)x:

where we have used e, =(if2) de,/0t; and set y=tan (¢/2). Now recall a =
—in cos ¢ and therefore

é-'1+el = _d)x’
or
ii+u
=¢_
2

Therefore the introduction of vy = tan [(u + @)/4] is entirely natural. There is no
hocus pocus, no cheating!

The second example illustrates a Schiesinger transformation [86], [125]. This
time we choose R so that the new fundamental solution matrix V has an
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where T is the stress and we define the convective derivative

%w =w; +u-Vuw (12.18)

for any function w (ecither secalar, vector or tensor valued).
In particular, we assume that the stress tensor T has the form (for the grade

7. model)
T = —pl + §"(a),a2,...,a,), (12.19)

where p is the pressure and a; are the Rivlin-Ericksen tensors defined recursively
by (recall the notation (12.18))

a=L+L" |, L=V,

a; = maj_l +aj L+ LTaJ_l ,
8" =31, Si and cach S; is a polynomial in the a;:
S, =na,, So =aa» + n-_:a‘l" .
S; = fiag + f2(ayas + asa;) + /53(“'&1';’):1. , ote.
The so-called grade-two fluid model has the constitutive equation

T = —pl + »a;, + o as + aqa;, (12.20}

where the parameters 7 and a; are material constants. Physical arguments [12][15][13]
show that the coefficients should satisfy

n>0, a >0 and o +a»=0.

Setting a = «ap (and a2 = —a) and substituting (12.20) into (12.17) yields (12.14).
For the curious, the grade-three constitutive equation has

SB = na; + aqpas + nga'f + B1ay + Ga2(ayas + ana)) + F4(tr a'f)al ] (12.21)

To be consistent. with thermodynamics, the conditions on the material constants
for a grade-three fluid are (cf. [13])

Ph=02=0 020 0,20, p>0and |a; + as| < /24335 . (12.22)

12.3.2 Geometry of maps

When v = 0 in (12.14), we get a grade-two variant of the Euler equations. It
has been known for some time that there is an intriguing geometric interpretation
of flows satisfying the Euler equations. Consider the class V* of vector fields u
satisfying (a) u € H*(Q) for a domain (or manifold) €} with s sufficiently large, (b)
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One finds that (recall 7.7 —o.,p_/4{*=7% since det V=1)

T=0, p=r, (5.157)
and expanding the expression
.1
o, T_ _4._52 O4L.T_,
we find
. 1,
6=——D;oc" o, (5.158)
2T

where D, is the Hirota operator. Writing (5.151) in terms of e, f;, we find
using the fact that e,f; =—%,,/7+73/7° (subscripts are t; =x derivatives),

2

éi=—e,, +f;—"+e§f1. (5.159)
1
Also
.1
fi=—. (5.160)
€

Now let us imagine that we want to apply this Backlund-Schlesinger transfor-
mati()n many times. Let (éls fl)::(qn+la rn-l-l) and (e‘l, fl)z(qm rn)-

Then, the successive application of the Backlund transformation which
changes the monodromy of V by

—2iL
1
2i{
gives the sequence
2
Gt =~ +Z—""+qﬁrm (5.161a)
1
Fyr1 =—. (5.161b)

Set g, = e" whence r, =u " and (5.161a) is
Uy, = €50 1 — gMart ™% | (5.162)

If we call x = it, these are the equations for the Toda lattice! Thus, we have the

remarkable result that the Toda lattice can be solved by applying successive

Biicklund transformations of a certain kind to the sI(2, C) hierarchy.
Needless to add, the Hirota equations for the Toda lattice are

Thn = On—1, Pn= T
and (because x=t, =it)
1 1
On = D,ZO'n_l *On-1aT 5 tho—n-l *Op-1-
21'"._1 20n—2
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The Toda lattice analogy is useful as it allows us to visualize the effect of R in
the following way. Imagine that instead of the triplet {p, 7, o}, we think of these
three quantities as being the 7-function on the Toda lattice associated with sites
n—1l,nandn+1,ie. 7,_,=p, 7,=7 7,+1 = 0. Under the Toda lattice rule, the
7 function at the (n +2)nd site 71,5 is given by

1
Tn+2=™ 5 th'rn—!—l " Tn+1e
27,
Let us apply R. Being a matrix, it does not act directly on scalars. We will
therefore denote its effective action as R.

R-p=7&R-7,,=1,
R-7=0& R-7,=7Tps1-
Applying R to o, we obtain
R-0'=~—-]—Di0'-0'

27
which is equivalent to
1

_ 2 . _
R 7= DTt * Tt = Trsaze
27,

The action of R on 7,_, which is given by (1/27,)D?7,_, - T.-, is to shift the
indices up by one and give 7,_,. Thus,

R{' =5 Tn—15> Tns Tns1s - - -} ={- « o5 o Tnds Tnazs - - -}' (5-163)

The action of R is therefore best thought of as an action not on a triplet {p, 7, o},
but rather on the sequence {7, }=...

Finally, let me tell you how to calculate matrices R which change the
monodromy at { =, Simply take

1 a 1 S, B Ye
R=={U+H) '—r+“(I““H) —;‘+E —r-’t—F — > (5.164)
2 Z &2 Z '4 Z 4 4
where the summations run from 0 to o, and write down the equations

RQ=0R.
We find for the coefficient of {™

2Aen(h,_,—h,_)+bf,_,—c2,}=0, (5.165a)
0
2 48, (hoey = b))~ Gy + b} =0, (5.165b)

{ar(en——r _énmr) = br(hn--—r + En-vr)} = 09 (5-165C)

8, . —fu)+e(h, ,+h, )} =0. (5.165d)

o= 2= ©
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In order to change the monodromy of V by

=2 O
114
O 2

look for solutions in which 6, =0, «,, B,, ¥, are zero for r=2 and By;=vy,=0.
Now solve the equations to find

o, = constant = —21', ;= 2i82/el,
Bi=ey, y1=h1-
A little calculation shows that

h,_,=h, 44 & Ine
n—1 -1 2 atl atn_z 1»
which gives
% = Tel =aq.

The other relations (5.157) and (5.158) also follow in a straightforward
manner. In summarizing, we will adopt a more convenient notation. If
V—->V,=R,V (5.166)
with
. o
""2!( ——1In € €
at,
R, = , (5.167)

1
f1+=— 0

€

then the asymptotic expansion of V, is

X 7, —Z—’C X,o)\ [-2ic 0O
V.~——| . (5.168)
™ Lx X7 0 —
20 P +T+ 2iL
where
1
TS0, p=T, 0= D}o-o. (5.169a)
T
Equivalently, in terms of the Toda lattice picture
{- ~ 5 Tn—15 Tns Tu+15 - - -}+ ={- -+ Too Tnt 1> T2y - - -}- (5-169b)

Note that the last equation is consistent with (5.67), the third equation in the
Hirota set for 7, o, p, because

2 2
Dio-o=D;7,  7,=—20,p, =20,

Note also that the determinant of R is constant and equal to —1.
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From (5.166) we find that the components (u,,, u,,) of a column in V, are

related to the corresponding column in V by (recall e, =if2e,,)

. .€2 1
Uy, =\ —2il +2i— Juy + ey, Uy =— Uj.
€ €1
The dual transformation,
V- V.=R.V
with
1
°n
R.= ! :
fi 2iL —2i—f2
fi
changes the monodromy of V at { =< by the factor
1
2iL ’
2iL
that 1s,
i 1
. ——X -~
) X 20t 2ig
VoL i
T_.
—X_ X7 0
20" T
and
1 2
T-=p, 0_-=7, p.=——D{p-p.
27

Equivalently, in terms of the Toda lattice picture

{' ces Tu—1 Tno Tnt s - - °}- :{- « o3 Tn—2, Tn1s Ty o « of-

The columns of V_ are related to those of V by

1 f

2i

Uy = f—_' uz, Uy = fl u1 + (21'{ - 2i '_2) Us.
1

fi

The reader should calculate the equations analogous to (5.161).

(5.170)

(5.171)

(5.172)

(5.173)

(5.174a)

(5.174b)

(5.175)

Now we are going to use these Backlund-Schlesinger transformations in
writing down the Bécklund formula for adding solitons. Employing the strategy
of the first example, we will ask that R = R, is chosen so that one of the two

columns of V; = R,V has a zero at { =a. If

(2L ta b)
RL_( c d/’

(5.176)
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with a, b, ¢, d independent of ¢{, this means that
(—2ia +a)u, +bu, =0, cu,+du, =0. (5.177)

From the Biécklund transformation

RQ=0R
which in component form is
—2iz(h—h)=bf—éc, (5.178a)
(—2it +a)e=b(h+h)+éd, (5.178b)
(-2 +a)f=cth+h)+fd, (5.178¢)
ce=fo—d(h—h), (5.178d)

we obtain by equating coefficients of powers of {,

§03 e;=b,
fl =6
—2i(h,— k)= esfy—&if,
& —2ie,+ae,=é,d,
—2if,+af, = fid,
éfy =fres. (5.179)

From (5.177), (5.179), we have

—

fi=—d-2,

Uy
1 . U
él == (_2iez+ ZIael - e% "'2)
d u,
and
52

e u
—2i(h,—hy)=e,f, +—= (—2i82 +2ine, —e3 3‘_2_) =—ny
U U, ox

after a small calculation using the equations satisfied by u,, u,; namely,

Uy, =—iU; +eql,, Uz, = iluy + fru,.
Since hy =(if2) 8* In 1/dt, 9t _,, this gives us that
f - ‘Tul. (5-180)
We also find
o= du
P=J17T= —-—2. ™ = ‘_d'ruz. (5.181)
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We will show shortly that d must be constant; it is convenient for us to take it
equal to —1. Finally

e u
G=87= Tel(—Zia +2i24e, —3)
€1 Uy
TN (5
= Te, 1;( ) = 7e Uy (a) =ou (o) =71, u; (). (5.182)
1

What a remarkable result! There is a close resemblance between the two
formulae (5.180), (5.182). The difference is that the new o is given in terms of
the old 7, o, p and u,, u, which had undergone a plus Schiesinger transforma-
tion. On re-examining (5.181), we find from (5.175)

p =Ty = Tf il =pUy_=T7_u;_. (5.183)

Again, the formula has the same form as (5.180) except it is applied to the
(7, g, p) and (u,, u,) which have undergone a minus Schlesinger transformation.

The reason that d is constant is that det V =—2id({ —a). Since this is also
the Wronskian of the fundamental solution to the equation set V, = Q®V, it
must be independent of all the t,. The choice d = —1 renders the asymptotic
expansion of V similar to the asymptotic expansion for V except for the factor
2i({ — ) in the first column. In summary, then, the application of

~2it+2ia—e; 2 (a) e
U4

R, = " (5.184)
= (@) =f1 -1
Uy

to V gives us a V; which satisfies Vi, = 0"V, cach k, with Q=
RO®R '+ R,R " and
R Q= (QR; (5.185)
also,
7 = U (@),

oL = Tux(a) = 7_uy_(a),
o =ou () =71,uy; (a). (5.186)

The vector u, refers to the column in V for which the corresponding column in
V. has a zero at { = .. Then u, is the other column. Usually, by an appropriate
linear transformation, we will arrange things so that the left column in V; has
the zero; hence the use of the subscript L.

Now, since on the application of a plus (minus) Schlesinger transformation,
7, =o(7_=p), we can call oy =7, (p, =71 ). Then it is natural to rewrite
(5.186) (calling 7= 1),

T =7.u (),
Tol = 70“1(01),

Tor = Talye(@). (5.187)
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Hence, a Biacklund transformation which adds a bound state at {=a can be
expressed in a simple form, analogous to (4.99) for the KAV family for which
the “eigenvalue” problem is in scalar (the Schriodinger equation) rather than in
matrix form. The main 7 function 7, transforms exactly as (4.99) and the
auxiliary 7 functions 7_(p) and 7,(c) transform in a similar way after the
application of minus and plus BéAcklund-Schlesinger transformations respec-
tively.

It is straightforward to express (5.187) in terms of the operators X, and
X_ acting on the old 7, g, p because we know how u(a) is expressed in terms
of these quantities. Recall from (5.86) that the canonical V has the form

X7 -—X,o
V~% ; 2 . (5.188)
EZX_p X7
V_ and V, have asymptotic form
— -le_'r_ X, o
Tl 21“: (5.189%)
- ZEX—p_ 2iLX v
and
22X v, ——X,
1 # ‘l*‘fzx o (5.189b)
X ps Elz XL,

respectively. Hence when one takes (u,, u,) to be a linear combination of the
columns of V in (5.188), one takes (u,_, u, ) and (u,., u,,) to be the same
linear combination of (5.189a) and (5.189b) respectively.

An example: the creation of a one-soliton solution. Let us apply this transfor-
mation once, starting with the trivial solution 7=1, o =p=0. Let (u,, u,) be
the linear combination of A times column 1 and B times column 2 of V. Then

A
PL=T_L= ™ X (o) 7+ BX,(a)o_=BX,(a)- 1 (5.190a)

because 7_=p 1s zero and o_=v=1.

=70, =AX _(a) -1 (5.190b)
and
o =7, =0. (5.190¢)
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Hence p,.=Bexp(i} o*t), 7 = A exp(—i ¥ a*t), 0, =0. This corresponds
to the solution

B
=0,  fi=—rexp (2i Yy aktk) (5.191)

of the equation hierarchy.
In an exactly similar way we can create a zero in the determinant of RV at

{ =a by applying u
(~1 &= (@) )
Uz

f1 2i§‘2i&_f1é1

Rg = (5.192)

to V. The corresponding quantities are

TR = Tor = ToU2{@),
Pr = T_r =T_U,_(a), (5.193)
Or = T4r = To Uz (@).

Again, I remind the reader that if we take (u;, u,) to be a linear combination of
the columns of the canonical V given in (5.188), then we must take the same
linear combination of the columns of (5.189) for w_ and u,.

Let us now apply (5.193) where the original 7_, 7, 7. (p, 7, &) is given by
(5.190). A little calculation shows that

4

x.© X, @160~ (1-5) " o (1T @+ 2490) {050+ 37

!

XX @f6=(1-5) e (i@ -24n)

i i
' (”‘ ok 2k¢'k) (5.194)
where we have used the fact that
o tk n F1/2
exp(j: —Zi—gg) = (1 —-%) ; (5.195)
i

We will take the u, in (5.193) to be C times the first column of V and D times
the second. We find (we drop the subscripts R on 7, g, p)

(19 a5

: (1 +E%-§—§exp (2:' > (" —c‘u")tk)),
o= (1 —-g—) 1IZCA exp (—i Z (a® —&k)tk) €Xp (_Zi Z &ktk)s
p= (1 —g—) 1lzZi&BD exp (—iz (o® —&")tk) exp (Zi Yy a"tk) . (5.196)
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This is the one-soliton solution of the AKNS hierarchy. If we look at the
special case r=—g”*, then @ =a™* and with the choices

the equations are

e, =—2m sech (i z (a* —a™* ) +2'nx0) exp {—-i z (o +aDHg+ i(d) +§)},

fi=2msech (i z (a* — a*) + ano) exp {i z (o + ) — i(d) +g)} ]
(5.197)

The reader should also verify that the formulae (5.196) are equivalent to the
formulae one obtains from using Hirota’s method (5.70). They are not exactly
equal and differ only by the exponential factors with phases linear in the g,
which make no difference when one computes either ratios o/ or second log
derivatives.

Note that exactly as in the case of KdV (see Section 4f), the phase shifts
emerge as factors in the successive applications of the “vertex” operators.

In summary, then, the gauge transformation

V — Rgrl(agr)- - - Rp (@R (an)- - - Ry (e) V

adds an (N, N) bound state, which for N = N is an N-soliton state, to solutions
of the AKNS hierarchy.

As the final remark in this section, let us examine the effect of repeated
Biicklund-Schlesinger transformations on an exact (N, N) bound state solution.
Suppose we normalize V so that it can be written in the form (5.100a). In
particular the ¢! of the second component of V, and first component of V, are
(i/2)f, and —(i/2)e, respectively, where the latter as functions of x have the
shape of the (N, N) bound state solution. Apply R., the plus Schlesinger
transformation. This sends V as given by (5.100a) into R, V. But we know
from the definition of the plus Schlesinger transformation that its effect is to
change the monodromy of V at ¢ =< by the factor

(—Zig 0 )
1
0 -275 ;

This means that the new V has the form (—2i{V,, (1/2i{)V,) where V; and V,
are given in (5.100a) with the vectors C,,, C, given by exactly the same
expressions as before with the strings e, f, h replaced by the new values é, f,
attained under the Schlesinger transformation. The reader might check, for
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example, what happens to the vector

L T
1+—'—j efit - +—
V. = 2L 4
' _I_f + +_TZ
2" N
when multiplied by
‘_ZEC"—_a—lne-l 81
oty
R, = 1
— 0
€,
We find
14— xef 9 —Ine;+ -+ i
11 €4 - N1
RV, —2if| 7 st &
LS -
2{6] CN+1
Recall that f, =1/e,, and check that
i {* i 0 i (.- 1] - ] i [ -
- —lne = J‘ +—jh —h ————l J‘
ZCJ eifi— 2{81 Ine, = 25 éfi C (hy—h,) dx 2 ot ney;= ZC éfi

from the fact that h,—h,=(i/2)(3%/0t>) In e,. (See the unnumbered equation
after (5.165).) On the other hand

—-i—e,+ o

R V Z“___}___ 2( cN—l
T 1o 422
ch]

Therefore the new V corresponds to a solution é,, f1 which corresponds to an
(N+1, N—1) bound state. After N applications of R,, the second column of
the new V has a second column (§) which means that the new e,, which we call
g~ (the first e, is g, the second &, =g, and so on), is zero. But we know from
(5.161) that N successive applications of R, solves the Toda lattice between
the mass point which we label zero and the mass point we call N.

Hence, if g is a (N, N) bound state solution of the AKNS hierarchy, the
motion of the mass point which we label zero in the lattice is given by the
spatial shape of q. Further, the mass point labelled N will have solution gg = 0
which means that ug defined by exp ug = qg is equal to —. Therefore the
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successive application of a plus Schlesinger transformation on a (N, N) bound
state gives a sequence q,, 0=r=N, g,= q whose shape as function of x is the
time motion of the mass points labelled zero through N on a finite Toda lattice
with free ends.

The set of differential-difference equations which are associated with the
sl(n+1, C) flow via Schlesinger transformations has not yet been calculated.

We will again return to the subject of Backlund transformations at the end
of 5j. There 1 will show how they relate to the Zakharov—Shabat “dressing”
scheme and the method of reduction.

Sh. The notion of grading. In general, the Kac-Moody algebra A{"” can be
defined by giving six generators po, P1, qo» 91, Yo, 11 (for the algebra associated
with sl(n+1, C) we would need 3(n+1)) and their commutators as follows:

[Qia r]] = Sijpj:

[p.. Pj] =0,

[p: g;1= Ay,

[pi’ r]] = _Aijr]':

adl %q; = ad) 1, =0, (5.198)
where the A; are the elements of the generalized Cartan matrix (3 72 of
A and no summation convention is implied. The expression ad, “iq; means
[g5[a. . - .,[aq, q]l] with the commutator taken 1—A; (in our case, three)

times; i.e. [q;, [q, [g, g;]11=0, i#j. For example, consider the identification

Po Pi 9 41 ro ry

. 5.1
-H+Z H Ft E E{* F (5.199)

The commutator rules (5.198) are consistent with those already established for
X; = hF, + ¢E; +f;F; with H,={H, E; = {’E, F;={'F. Notice that p,+p,=
Z commutes with everything; it is called the center. Notice also how new
“elements” are introduced; H; or ¢H is produced by [qy, qol; F, or ¢°F by
—A3[[a1, o], o] and so on. The reader might check that the last condition of
(5.198) is satisfied.

When the center Z is added to the loop basis {H,, E;, F;}~.., the new set is
called the central extension of the loop algebra si(2, C).

We want to assign a weight W to each of the generators which is consistent
with the commutation rules (5.198). For example, we could do this as follows:

Po P Q@ 41 T =

0 0 1 0 -1 0 (5.2002)

By adopting the rule that the weight of the commutator is the sum of the
weights of its individual elements, we notice that the weighting assignment is
indeed consistent; e.g. W(lq,, r,])=0= W(p,). Comparing the identification
(5.199) with (5.200a), the equivalent weighting in terms of our basis is achieved
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H E F ¢
00 0 1° (5.200b)
Notice that each of the blocks

hH; + e,E; + fE;

has equal weight. This is called the homogeneous grading.
But there are other possibilities. Consider the assignment

Po Pr Qo 1 Yt N

00 1 1 -1 -1 6-201a)

which can be achieved by the same identification as (5.200a)
Po Pr o 1 T n
0 o 1 1 -1 -1
-H+Z H F£ E E{'F (5.201b)
except that we now assign the weights
W(H)=0, W(E)=1, W(F)=—-1, W()=2 (5.201¢)

to H, E, F and the grading parameter £.
How are the two gradings related? Consider the map which acts on the
typical element X()=Y." (hH+eE+fF){ of sl(2, C)

1 1
X()— ( A_I)X(Az)( )\) (5.202a)
in which we identify the coefficients of h;, ¢, f;;
H{ 7 — HA 4, (5.202b)
E{ 7 — EA T, (5.202¢)
F71—FA™2. (5.202d)

Let us use the identification to assign new weights to the H, E, F, { of the
left-hand side given that, on the right-hand side, the weights are W(H) =
W(E)=W(F)=0, W(A)=1. Clearly the assignation must be (5.201¢). Not
surprisingly, then, there is an isomorphism between the two elements of
sl(2, C) even though the basis vectors and grading parameter are weighted
differently.

But how can this make any difference in the dynamics? The point is that
different gradings induce different decompositions of the algebra. In the first
grading, the terms hoH, eE, foF all had the same weight, namely zero, and
were therefore assigned to N. They also belonged to N*= K" which was the
phase space. In the second grading, the terms e¢,E and fyF belong to different
subalgebras, the former has weight one and belongs to N, whereas the latter
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has weight —1 and must therefore be assigned to K. Now recall that this was

exactly the same decomposition that we made in the third example at the end
of Section 5c; namely.

—M
N=) (hH+eE+fF) 7 +hoH+e,E, M arbitrary,
—1

K= i (hH+eE +fF), ™ +foF.

Note that all terms in N have weights greater than or equal to zero; those in K
have weights less than or equal to —1. The phase space K* has typical element

Q=hoH+foF+) (hH+eE+fF){
1
which can more conveniently be written as

o ) 1

i=1 i=1 2

o 1
+ Z 5 (.ff +ej+1)Yzj+1. (5-203)
i=1

—f,+ ej+1)X2j+1

In (5.203) —
2j = 3

Xoj1= (—F+§){",
Y= (F +9§_j,

and the subscripts denote the inverse of the weights of each term. The reader
will also recall from Section 5c(iii), that we have taken hy=0,—-fo=¢;,=1, a
choice consistent with the time flows which emerge.

Whereas the first grading leads naturally to the nonlinear Schrodinger (NLS)
family of equations, the second grading leads naturally to the KdV and
modified KAV families. I use the word “naturally” deliberately. It is certainly
true that the NLS family contains the latter families but one has to constrain
the phase space (either by f; =—1 for KdV or f; = +e, for MKdV) in order to
obtain them. In the second grading, the equations simply appear without any
constraints being imposed. The only constraint we did impose, which has a
somewhat arbitrary look about it, was the choice of h,=0. This is analogous to
making the consistent choices h,=—i, €;=f,=0 in the equations associated
with the first grading. This rather minor arbitrariness can be removed by using
as phase space £ + K* instead of K* where ¢ is distinguished element (with
some constraints) in the dual K* of K. We meet this idea in Sections 5i, 5j.

As a final comment to this section, we mention that all the independent
gradings on the loop algebra sl(2, C) are determined by the automorphisms of
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finite order on sI(2, C). A finite order automorphism ¢ is a map on the algebra
which preserves the Lie bracket i.e. [¢(X), o(Y)]=c(X, Y], X, Yesi(2, C)
such that ¢™ is the identity for some integer m. All such maps are similarity
transformations o(X)=aXa "' for some a in sl(2,C), a™ =1 For si(2,O),
note that for a = H, ¢ acts as a linear transformation on the space of H, E, F
and splits it into two subspaces, o(H) = H, o(E, F)=(—E, —F). Note that in
(5.203), the elements H and E, F appear as even and odd powers of the
weighting respectively.

S5i. A second Hamiltonian structure. I begin by reminding the reader that
the Hamiltonian structure introduced at the beginning of Section 5¢ and the
variational Hamiltonian structure introduced in Section 3b and by (5.56),
(5.57) at the end of Section S5c are completely different. You will recall the
variational Hamiltonian structure we found in Section 3b for the KdV hierar-
chy; namely

Morrs 2 pg 2o (5.204)
8q 4 8q
where N and M are given by (3.6). The two symplectic structures N and M are
local (although also degenerate) in the sense that the application of either to a
member of the phase space (the differential algebra consisting of q and all 1ts x
derivatives) keeps it there. On the other hand, the variational Hamiltonian
structure for the AKNS hierarchy does not appear to admit two local struc-
tures. In Section 5d, we showed that (g=e,,r=f,)

(f): —2iL"(_qr) (5.205)

and, in [75], it is shown that this can be written as JVH, where

5 & 01
SCONRREE

8q or -1 0
and H, is a constant of the motion proportional to the { " coefficient in the

asymptotic expansion of In a({) (see Section 5f(1)) about { =<, The operator L
is given in Section 5d, and even though one might write (5.205) as

qu.. +1 =

(f) =JLVH, ,=JL*VH,_,, etc,

t,
the symplectic operators JL, JL?, etc. are no longer local and take us out of the
original phase space which in the variational Hamiltonian structure consists of
q, r and their x derivatives to all orders.

It 1s therefore interesting that the Hamiltonian framework associated with
the algebraic approach of Section 5S¢ naturally admits two local structures. The
second one is obtained by defining the Killing form or inner product (X, Y) on
G to be the ¢! coefficient, rather than the ¢° coefficient, in the trace of the
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product XY. We call it (X, Y)_,. Now, a little thought shows us that K* =K,
(also N' = N). As before, there is a natural Hamiltonian structure on K+ and,
by translation, there will also be one on K+ & where ¢ is a fixed element of
G. We take € to be in the orthogonal complements of both {K, K]and [N, N1.
It is clearly in the latter, for by writing € + K+, we imply that £ does not belong
to K*. Therefore it must belong to N* and the orthogonal complement of
[N, N]. This will only be the case if £ = X¢°, since [K, K] contains only terms of
£, p=-2 and [N, N] contains only terms £°, p =0; the (new) inner product of
¢ with either is zero.

If £ satisfies this condition and if ® is ad-invariant on G, the Hamiltonian
vector field is given by

XX+ ) =[x V(X +¢), X+e] (5.206)

Moreover, if ®, ¥ are two ad-invariant functions on G, they are in involution
with respect to the Poisson bracket on K+ &. For our purposes, we take

e=—iH", ¥ =—-KS X, X)o=—-KS* X, X)_, (5.207)

where the subscripts 0 and —1 refer to which inner product we take. The
Hamiltonian which gives rise to the ¢, flow is then ®, ,,. Then for Pe K =K,
the flows are given by

P, =—{m V®, (e +P), e+ P]=[mS"(e + P), e + P]1=[Q™, ¢ +P1.
(5.208)

These are exactly the same Lax equations as given in (5.52) as e +P=Q.

The major differences between the two approaches associated with the two
Hamiltonian structures are (i) the Hamiltonians are shifted; and (ii) the £°
element, which was constant as a consequence of the flows in the first approach,
is fixed once and for all in the second. In our first grading £ = —iH, whereas in
the second grading introduced in the Section 5h, € =—F+ E/{. The choice of
the second Hamiltonian structure allows us to avoid what appear to be rather
arbitrary choices such as setting e, = f, =0 in Section 5c and hy=0 in Section
Sh. 1 want to stress, however, that there is no essential difference between the
two structures nor is there a significant advantage to be gained by using one
over the other.

In the next section in which we discuss the reduction procedure, we use the
first structure. There we have K*=N* (X=Y7 X;'), K¥=N"* (X=Y7 X"
and we will take &, which belongs to K™ 1o be —iH{. The typical element in our
phase space will then be simply { times the Q we used earlier,

Q;

—IHL+Qu+ 2 =

where Q, Q,, O, etc. are exactly as before.
5j. Imverse scattering and the Riemann-Hilbert problem, algebraic style.

By this stage, I hope you have been convinced that the special qualities
enjoyed by integrable systems are algebraic in character. It is therefore
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reasonable to ask if there is an algebraic analogue to the inverse scattering
transform and the Riemann-Hilbert problem. There is. The main idea is that
the Lax equation (5.52) is a reduction of a simpler flow on a larger manifold,
the reduction being achieved by using constants of the motion of the simpler
flow and their corresponding symmetries to obtain a smaller phase space. The
price one pays for the smaller phase space is that the simple flow does not look
so simple any more.

In Section 4c¢, I pointed out that to each symmetry of a Hamiltonian system,
there corresponds a constant of the motion (Noether’s theorem) and vice versa.
The well-known symmetries, like the invariance of the Hamiltonian under
translation or rotation, give rise to linear and angular momentum conservation.
To a group of symmetries, there corresponds a vector of momenta which are
constants of the motion and which are in involution with each other under the
Poisson bracket associated with the flow manifold. It is a theorem that if there
are n independent symmetries and thereby n constants of the motion in
involution, then 2n of the 2m variables in the phase space can be eliminated. If
n =m, the phase space reduces to a single point and the motion is exactly
integrable. Such a system is called completely integrable. This classical theorem
has been put in a general framework by Marsden and Weinstein [88] and the
process of eliminating variables through use of the symmetries is called
reduction. Roughly speaking the method consists of the following steps. For a
complete account the reader should consult Abraham and Marsden [84],
Arnold {105] and the forthcoming book by Marsden, Ratiu, Weinstein,
Schmidt and Spencer.

Suppose we are given a symplectic manifold P with a group of symmetries G
acting on P by canonical transformations. The two-form o on P is thereby
preserved by the action of G. Let G be the Lie algebra of G and G* be its
dual. Then the momentum map J assigns to a point in P a value in G*; namely J
is a vector belonging to G* listing all the constants of the motion. The level set

J7'(1), namely the set of points p in P for which J(p)=p is a manifold and
invariant_under the isotropy subgroup G, of G under the coadjoint actlon
namely G,, is the set of ge G such that (1n matrix representation) gug ™"

Then the Marsden-Weinstein theorem states that the quotient P, =7 (u.)/ (—}u
is a symplectic manifold with its symplectic form w, induced by w. P, is the
reduced phase space. Moreover, if ® is a Hamiltonian function on P, invariant
under the action of G, then it induces a Hamiltonian @, on P,. If F, is the flow
of the Hamiltonian vector field corresponding to &, then by the Ad*-
equivariance of J (Ad*-equivariance means that J(g - p)=Ad%_,J(p) = gug™

where g - p denotes the action of G on P), the level set J —1(41«) IS 1nvariant
under F, and F, induces a flow F} of symplectic diffeomorphisms on the
reduced manifold P,. The second part of the Marsden—Weinstein theorem
states that F}' is the flow of the Hamiltonian vector field corresponding to @,..

We shall also be using a second type of reduction, a Poisson reduction.
Given a symplectic manifold P with a group of canonical symmetries G, the
quotient manifold P/G has a natural Poisson bracket induced by the one on P.
Moreover the Hamiltonian vector field corresponding to @ on P and to & on
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PIG, &([p])=(p) (p] is the class of peP in P/G) are related by the
projection map P — P/G which, if canonical, preserves Poisson brackets.

In our case, we take the original manifold to the T*G, the cotangent bundle
of a group G, the Lie group corresponding to the loop algebra G =si(2, C). (I
mean by this that every element in G is the exponential exp t¢ of some element
€ in the algebra. Later considerations, which have to do with the Backlund-
Schlesinger transformations of Section 5g and which will be discussed in the
summary of this section, suggest that it is probably appropriate to augment G
to include certain discrete symmetries in addition to the continuous ones,
analogous to including the action of reflection when constructing O(3) from
so(3). But the present definition will suffice for now.) The manifold T*G is
naturally symplectic and consists of a base space G at every point g of which a
fibre, the dual to the tangent space at g is attached. In the vernacular of
classical mechanics, G is the set of position coordinates (the g’s), the tangent
space at g is the set of velocities (the g’s) and the fiber is the space of momenta
(the p’s). Every member g of G can be uniquely factored (the analogue of the
Riemann-Hilbert problem) into a product

g=k*n (5.209)

where k and n are exponentials of elements in the subalgebras K and N
respectively. The choice of writing the left factor as an inverse is merely one of
convenience. The group of symmetries with respect to which we perform the
Marsden—Weinstein reduction on the phase space T*G will be K, the subgroup
corresponding to K. The reduced manifold will be N X (& +N*), where ¢ is a
single, distinguished element in K* which will shortly be identified. Then the
trivial application of the Poisson reduction by the N action leaves us with
€ + N¥, the phase space of Section 5c. The time flows in € + N* induced by the
Hamiltonians ®; defined in (5.48) can be “integrated” to give

Q(t) = k(t)(—iH)k (1) (5.210)

where k™' is the left factor of g(t;). We will see that g(t;) evolves very simply in
time

g(;) =exp (—i ) £"t;H)go (5.211)

where go=k *(0) and Q(0) = k(0)(—iH)k™'(0).

We will elaborate this procedure in five steps. First, we will trivialize T*G as
G X G* and thereby endow it with coordinates. Second, we will take our
original Hamiltonians ®, of Section 5c, which are Ad*-invariant on G¥*, and
extend their definitions to all of T*G. We will then use the natural symplectic
structure on T*G to find the flow induced by ®;. The flow on T*G will look
very like that satisfied by the scattering matrix (5.98). Third, we will find the
flow on the reduced manifold N x (g + N*) (N is the subgroup of G associated
with the subalgebra N and N* is the dual of N) with the canonical symplectic
structure. The Poisson reduction to £ + N™ is then trivial. The typical element
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of the second component in N x (g + N*), which will be ¢ times the Q of (5.45),
will evolve according to (5.210) and satisfy the Lax equation (5.52). In the
fourth step, we will identify k(t;) of (5.210), the inverse of the left factor of
g(t,), with V(t,) defined in Se.

Finally, in step 5, we discuss how to solve the Lax equation (5.52) in an
algebraic way. The most important step as we shall see is the one in which we
factor a group element g into k™ 'n. This factorization js the algebraic analogue
of the Riemann—Hilbert problem which you will recall was the principal step in
the construction of the fundamental solution matrix ® in Section 5f(i) from the
scattering data. Having found k, we will then have the solution to the Lax
equation. Because these steps require the introduction of a lot of new
mathematical ideas and notation, T will attempt to discuss the results in the
language already familiar to the reader of this book. The reader interested in
studying these details further is referred to paper IV in our series “Kac—-Moody
Lie algebras and soliton equations” [38].

I want to point out that the notion that the AKNS flows are reductions of
simpler flows in a larger manifold is not new with us. I refer the reader to the
papers of Reyman and Semenov-Tian—Shansky [106]; also the ideas are very
similar to those used by Kostant, Kazhdan, Sternberg [100], Moser [107] in
connection with the Toda lattice, the Calogero and the Moser-Sutherland
systems; they are also closely related to the “dressing” scheme of Zakharov
and Shabat [108]. What is new with us (Flaschka, Ratiu and the present
author) is the incorporation of the flows corresponding to the times t, k <0,
(the “sine-Gordon” flows) into the general picture. I discuss this in the
following section. At this time, I want to elaborate further on steps one
through five.

Step 1. We (right) trivialize T*G by identifying it with G X G* where G* is
the dual of the Lie algebra G = T,G, the tangent space to G at the identity.
The identification proceeds as follows. Take a curve e%, £e G, through the
identity of G and take its tangent vector there, (d/dt)e® |,_,. Right translate
the tangent vector by g and call this element T,R £ In a matrix representation,
where £ €sl(2, C) and g has determinant one, T,R £ is simply £g. Then we give
i, € T*G, which lives in the fiber above g, the coordinates (g, ), n € G*, where

(1, &) ={phg, TR E) (5.212)

with (-, -} the pairing between G and G™*. The right-hand side can be written
(T*R g, £) whence = T*Ryu; i.e. p is the element in G¥, the fiber at the
identity, which under right translation by g takes (e, p.) to p,.

Step 2. Let ®(u) be an Ad*-invariant function on G*; i.e. ®(g " ug) = D(w).
You will recall in Section 5¢ that we very quickly identified G* with G because
we could define an inner product on G itself. In that case ®(X) was Ad*-
invariant on G if ®(e’¥Xe )= ®(X) for all X, Y € G, t real. This condition was
expressed as [V®(X), X]=0. Here the same notion says that & is Ad*-
invariant on G* if (e ¥ Xe'Y) = ®(X) for all Xe G*, Y e G. We extend D(p)
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to T*G by
B(p,) = (). (5.213)

The flow on T*G can now be worked out; the details are given in [38, IV]. It is
simply the straight line flow

187 = 0: (5.2143)
&P
g=TR,—, (5.214b)
op
which in matrix notation can be written
g = 8;13 . (5.214¢)
ou

Here 6®/6u, an element in G, is the gradient of ® at p; i.e. D®(u)=
{(6®/Sp, ) where D®(u) is the Fréchet derivative of @ at p. Integrating
(5.214), we obtain

= Mo, (5.2153)

g =exp (t-@)go. (5.215b)
S

Notice the connection with the time fiow of action-angle variables. The action
variables (the new momenta) are constants of the motion whereas the argu-
ments of the new position coordinates, the angle variables, change linearly in
time. This is just like the behavior of the scattering data in (5.98). Without loss
of generality, we can take the matrix representation of i, to be —iH{. Then, if
@(p) is ®;_;, the component of ¢ ' in the expansion of —(h*+ef), it is
Ad*-invariant and, with respect to the {-, -)_o Killing form,

—i'H. (5.216)
Lo

Then, as function of all the times,
g=exp (~i 2 £tH)go (5217)

Step 3. We next carry out the symplectic reduction of T*G by K at & which
belongs to K*=N*. It turns out to be more convenient to use the first
Hamiltonian structure and the special element ¢ introduced there is —iHZ. 1
will not go through the calculations in details but simply sketch the results. The
reader should refer to [38, IV] for a more detailed discussion.

As mentioned already, we trivialize T*G as G X G*. Let ¢ be the map that
assigns the coordinates (g, u = TER,u,) to the element u, in T*G. K is the
group of symmetries by which we will reduce T*G. K acts on the left on T*G
and in the trivialization for ke K,

(k, g n)— (kg, Adi- 1) (5.218)
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which in matrix representation is (kg, kk™"). The left action of K on T*G has
a momentum map

J:T*G — K*,
which in coordinates is
e — ik (5.219)

where wu|x means that u=T R u, must lie in K* and therefore must be
restricted to K. If we identify G* with G, K* with N, this means that the inner
product of p|g with any element of N is zero. In the trivialization, the
momentum map is

J=J-¢7":(g w)— ulx (5.220)
Now introduce the level set J (&) of the element £ which belongs to K* = N*.

T ) ={(g wlulk =€}
which, because we have now identified G* and G, can be written as
T e)=Gx{e+v} (5.221)

where v is any element of K*.

Next we identify the isotropy subgroup K. of €. It can be shown to be K. It is
important that ¢ is chosen so that £|x;=0. Then in J *(¢)/K., any clement
(g=k 'n,e+v) of J Ye) is equivalent, under the action of K, to an element
whose first coordinate is in N; i.e.

(k™'n, e +v)~(n, A).

I have told you already that it is convenient to write g as k~'n. Now, what is A?
In order to take the k' away from k 'n in the first element, it is natural to act
on (k™ 'n, e +v) with k. But we already know this action to be

k(k™'n, e +v)=(n, Adi-(e +v)). (5.222)

It is not difficult to show that Ad¥-«(e +v) still belongs to € +N*, In matrix
notation, it is k(g +v)k™"; it is clear that both k and k™' can be written as
power series in £’ beginning with the identity at j =0 and since & + v belongs
to £+ N*, the product k(e +v)k ' does also.

The final (Poisson) reduction by the right action of N simply removes the
group element n from N X (&g +N¥). Because the actions K and N commute
(they act on different sides) and the N action leaves J '(g) invariant, this
reduction is trivial. Hence the general element in the reduced phase space
e+ N*¥= g+ K" is given by k(e +v)k .

The time flows of kK and € +v are given by (5.215a) and (5.217); namely
k‘l(tj) is the left factor of exp (—i ) t}{iH)go and £+v is a constant of the
motion which we have taken to be £ = —iH{. Hence the motion of the point p,
which we call £ZQ(t) in the reduced phase spaces € + N* is, after factoring out
the ¢,

Q(t) = k(§)(—iHDk (). (5.223)
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Step 4. It is now useful to identify the element k() with elements we have
already met. A little calculation of (5.223) shows that

Q, =[kk™, Ql (5.224)
But from (5.217),
g, =—il'Hg=—k 'k ,k 'n+kn,
which is also
Lk(~iHk ' =~k k™ +nn". (5.225)
Each term in (5.225) is an element of G. Take the projection into N and find

nn ' =]1 fk(-imk*=]] fQ)=Q?, (5.2262)
N N

as defined in (3.48) and (5.52). Hence
k, = QPk + k(iHL'). (5.226b)

Now recall the eigenfunction V from Section 5e. In order to compute its
asymptotic expansion, we wrote it as Vexp (—i) C"B-H )} whence V satisfies
(5.226b). In fact (look at (5.88)) Q= V(—iH)V'=V(~iH)V™" because the
exponential factor in V commutes with H. Therefore the element k is simply
V, which is the left factor of V when written as an asymptotic expansion about
{ =oo, Next look at (5.224). It is

Q,=[Q%, Q], (5.227)

the Lax equation (5.52) for the 52, C) family. Thus the time flows of the
element {Q belonging to € + N *, obtained as a reduction of the linear flow on
T*G are the same as those defined by the Hamiltonian vector fields in Section
5c.

Step 5. How, then, do we “solve” (5.227)? Given Q(0), calculate k(Q) which
is defined to be

Adi o —iH) = Q(0) (5.228)

i.e. k(O}—iHk'(0) = Q(0). It is the fact that we can always find a k(0) so that
{Q0) is similar to —iH{ that allows us to take & =—iH{ with no loss of
generality. We may also take n(0)=1; the identity k(0) defined in this way will
not be unique because it can be multiplied on the right by any factor which
commutes with H. This does not matter. We can take any k(0) in the
equivalence class because the right factor which commutes with H in k(0)
becomes a left factor in k™ '(0) and therefore also commutes with the time
dependence of g in (5.229) below. The factor therefore simply carries over into
a constant right multiple of k(%) and therefore disappears when we calculate
Q(;) from (5.223). The reader may have already noticed that k(t;) which we
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have identified as

v =[ e e

i

= 1

5¢
already has a right factor which commutes with H. When we compute Q =
V(—iH)V~', this factor, which is made up of nonlocal terms, disappears.
Recall that these nonlocal terms are expressed as the first logarithmic deriva-
tives of 7 and therefore are integrals of the phase space coordinates h,, e, f.

The solution to (5.227) is (5.223), where k is the inverse of the left factor in

g =exp (—i ) cfth)k‘l(o), (5.229)

which can be calculated. The factorization is not always an easy task and I will
not give a proof that it can be done. One begins by writing (5.209) as

kg=n

and then taking the projection into K

[[ke=0. (5.230)

These are the equations equivalent to (5.99). For the N-soliton solution,
equation (5.229) is a system of nonhomogeneous linear equations of order 2N.
It turns out that the coefficient matrix is the N-soliton 7-function, the 7 of
(5.70). For a general solution, the system of linear equations is of infinite order
and the determinant of the coefficient matrix, which is the r-function, is of
infinite order.

Therefore, we now have a second way of introducing and defining the
7-function. You will recall that we first introduced him in 5d as a potential.
Here he is an infinite order determinant arising from the solution of the
Riemann—Hilbert problem. The reader will recall from 5g that the auxiliary
7-functions ¢, p can be constructed from 7 through Bicklund-Schlesinger
transformations.

Let me illustrate that (5.230) holds in the case of a simple example. This
example corresponds to the simplest form of (N, N) bound state discussed in
Section 5g, i.e. N=1, N=0. Then from (5.99a,b) (I normalize the eigenfunc-
tions ¢~ (e, ¢~ (e, x —> +w, =Y {'t)

e e =)o e

(g, t)e ™ = ((1)) 0,.=2. lit,
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whence ¢, = (De'®. Thus,
1 O
k =V exp (i ) g"t,.H) ={ ve?e
{—&
We can find f,(t;) by recalling that the first term in the asymptotic expansion of
the (2, 1) element in k is if,/2{, giving

fi(ty) =—2ive™.

Note fi, =—2iv(2if})e** = (=if2) f14, .4, Where f,, . denotes j derivatives
of f, with respect to t, = x. e,, and therefore e, is identically zero. These are the
Lax equations in this case.

Let us check that the projection of kg into K is zero. Consider,

1

e 0
kg — k(':j)e#ier—l(O) —_ w0 eZi(el—e) _ 1 "
Y& — ———— €
{—&

You will notice that the pole at {; is removable and that kg has a Taylor series
expansion about {;. It therefore belongs to N. Further, let us also check

—i 0
Q=kW)iH) k) =[ —2iy ,, . |=—iH+-IF
—e i {— &
(-4
But we know
_yhi 1l ivyhe
f zl:C C 2?(
and, since f,, = 2il\f,,
f= [— Cl fi-

Since e=0, h?=—1 or h=—i. Thus (5.223) is
Q=—iH+ OE+{F.

More on Bdicklund transformations; the Zakharov—Shabat [108] “dressing”
scheme. It is useful to observe that the form of (5.223) is very similar to the
form of (5.134),

O=ROR,

for Bicklund transformations. Also (5.226b) and (5.133) are exactly the same
if we write R for k. Indeed in order to add one bound state at { =¢, to the
vacyum

Q@)=—iH, V(,)=e"",
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with 8 =37 ', we use (5.184)
—2i(f— e, =0
R -(HE0) a0y

1 = _Zi'yezjel ""'1
which can be normalized to
1 0
R= 2ie,
ye 1
{4

Interpreting ({—¢;)™" as Yq (£4/C*") means that this R has exactly the form,
I+Y7 Ri¢. Therefore it can be expressed as the exponential of an element
YT X{™ in the subalgebra K and hence belongs to K. The reader should
contrast this with the structure of the R used in the Backlund-Schlesinger
transformation which does not have this form.

A fundamental difference between (5.223) and (5.134) is, of course, that the
former tells us how an initial state Q(0)

Q(0) = k(0)(—iH)k~(0) (5.231)
evolves under the sequence of flows {1.}7 whereas the latter relates two
different solution types at fixed values of ¢, k=1,2,.... Nevertheless, they

are intimately related and I will now show, with the aid of (5.231) and (5.223),
that we can cast the Backlund transformation in the language of the reduction
method.

Let us begin, for example, from the vacuum state (for which we use the
subscript 0)

Qo0)=—iH, Vi 0,0)=1
which evolves under the flows to
Q(t;)=—iH, V(t, O =e ",
On the other hand, if we begin with the initial state

2iy
Q,(t)=—iH—- F,
i L~
then its time evolved state is
2iye?
Qt)=—iH— F
T C _CI

where 0, =37 {it. Its corresponding eigenmatrix V; is
V,= f}(tj)efie]—l — k(t]_)e—ieH
where k(1) is the inverse of the left factor in the decomposition of
e»ier~1(0)
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which I denote (e Pk 1(0))._.

Notice that this is also
(e_ierAl(O)eieH)_

since e belongs to N and any member of N can be mutltiplied on the right
under the minus subscript; i.e. (k~'nn’)_=(k 'n)_ =k

These observations suggest an algorithm for constructing new solutions out
of the vacuum state. Take an element k~(0) belonging to K which, as I have
mentioned, relates two solution types at time zero (here a one-bound state with
the vacuum). Form the product

(eVEOHk—l(O)eiOH)
and take the inverse of its left factor

{(e —iOHk-—l(O)eiﬂH)_}-—l.
Then the eigenmatrix

Vl — {(e—ier—l(O)BieH)_}—le—ieH

corresponds to a one bound state solution Q(t). This is precisely the
Zakharov-Shabat “dressing” algorithm [108].

What happens if we apply this algorithm again? 1 will ask you to show in the
exercise at the end of this section

{(Vik2' O VI Y 1V ={(e "k (O kT (0)e* ™) _} e

?

which indicates that this action is a group action [40], [106].

Summary. In closing this section, I want to make a few important observa-
tions. First, I remind the reader that the typical element Q(t) of the phase
space is given by (5.223),

Q(t) = k() (—iH)k (1),

where k(t;) is computed as (exp (—i6H)k '(0))-". The element k ~'(0) specifies
the solution type, whether it is a one-soliton, two-soliton, (1, 0) bound state, etc.
We can think of k7'(0) as being analogous to the scattering data at time zero.
Once the solution type is specified, the flow with respect to the sequence of
times {f }5 maps out a subset of the phase space. We shall see in the next
section that the time flow operator /04 can be associated with elements
—iH{*, k=0 of sl(2,C). These elements, together with their counterparts
—iHZ*, k <0, form a Heisenberg subalgebra of ’§f(2, C)+ Z, the loop algebra of
si2, ) augmented with a center element.

On the other hand, the passage between different solution types (at some
fixed values of ) is achieved by a Backlund transformation. And now we come
to a very important point. It is only the Backlund transformations (5.134) with

=1
R=I+) =C
1 ¢
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which fit the framework of this section. The reason for this is that if R is to be
a k, it must be the exponential of an element Y7 D.{”. The Backlund
transformations which correspond to R’s in this class include those which add
bound states and solitons but do not include the Backlund-Schlesinger trans-
formations. The latter correspond to discrete symmetries and the group ele-
ments g with which they are associated cannot be simply factored as k~'n but
must include, in the matrix representation, a middle element which is a
diagonal matrix.

Therefore much still remains to be done. First, one would like to understand
how to augment the group G in order to incorporate the discrete symmetries.
Second, one would like to have a theory which parallels that of the KdV
family, discussed in Section 4g. There, the analogue of (5.223) is (5.90)

O=kXk', k=U (5.232)

where X=—F+Ef\A and U is given in (5.90). The whole phase space is
recovered from the joint action of flows and Backlund transformations. There
are no discrete symmetries. It should not be too difficult to put a direct
correspondence between formula (5.232) and the corresponding behavior of
the 7 function, 7(ty, 15, t5, . . .), under the action of the flows and under the
action of a Backlund transformation (see Exercise 5j(2)).

In the present situation, the phase space is divided into discrete parts, each
one labelled by the monodromy property of V at { =. In each part, flows and
bound state and soliton adding Béacklund transformations act as continuous
symmetries. To move from one part to another requires a Backlund-
Schlesinger transformation. Now recall from (5.169b) and (5.174b) that the
action of the Backlund-Schilesinger transformation can be interpreted as a shift
in a doubly infinite sequence

{' « 3 Tn—15 Tn> Tnt1s - - -}

corresponding to the state of the Toda lattice at any given values of the times
.. The potentials p, 7, ¢ introduced earlier can be any successive triplet in this
sequence and such a sequence of three successive members will satisfy the
family of Hirota equations and correspond to a solution of the AKNS hierar-
chy. It would appear that the analogue of the v-function of the KdV family is
not a single function or a triplet but an infinite sequence.

If this is indeed the picture, then the 7 function is considered not simply as a
function of infinitely many continuous time variables but also a function of n
which takes on integer values. The flows change the continuous times. The
Backlund transformations change the nature of v from the vacuum state to a
one soliton state and so on, but keep n and {t}; fixed. The Backlund-
Schlesinger transformations change the discrete variable. What is the group
connected with these actions and how are the infinitesimal actions related to
the Kac-Moody algebra? How does the choice of grading indicate the need for
discrete symmetries? In the principal grading of si(2, C) which gave us (Exer-
cise 5¢(3)) the KdV family, there was only one 7 function and no discrete
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symmetries. In the homogeneous grading, there was a single infinity of discrete
symmetries and = 7(n, t, ) satisfies, as a function of n and #,, the Toda lattice
equations. The loop algebras connected with sl@r, ©), r>2, may have more
than one set of discrete symmetries, depending on the grading. What
differential-difference equations do they satisfy? For example, if 7 were to
depend on two discrete variables m, n, would the “lattice” equations satisfied
by 7(m, n, t,) have any relevance in statistical mechanics?

The idea that it is important to allow the 7 function to depend on discrete
variables originated with Jimbo and Miwa [125]. The reader interested in
reading about some of the latest developments should consult volume 2 of the
new Springer series which reports the proceedings of workshops held at the
Mathematical Sciences Research Institute at the University of California,
Berkeley. The title of that particular workshop is “Vertex Operators in
Mathematics and Physics”.

Exercises 5j.
1. Show that the successive application of the Zakharov-Shabat “dressing”
procedure is a group action.

Answer. Let V, ={(V,gV5)_}* V, and consider
Vo={(V;hvi)}v,
={(VogVo )1 Voh Vg (Vg Vo) J-H(Veg Vo )2 V.

The first factor on the left in the large bracket already belongs to K and thus
can be removed on the left; after the inverse operation, however, it is
transposed to the right and cancels (V,gV")-". We then have

Vo, ={VohV5'(VogVo) ' V4.

But since (k™ 'n)_=(k *nn")_, we can multiply under the second minus sub-
script by (VogVo1),. Hence

{VohVo'(Vog V)Y = (Vohg Vo)L

2. Recall in (5.90), we expressed the phase space element Q=
lim,_,.. Q®/AX, with Q® given by (5.57) in Exercise 5c(3), as

AQ =V(—iH)V =AU (5.233)

In particular, notice that in the principal grading of Sh, which gives rise to the
decomposition used in Exercise 5¢(3), XA belongs to K* and U, which has
asymptotic expansion I+terms of weight (—1) or less, is the exponential of an
element in K. U can be expressed in terms of the KAV 7-function.

i
TobT —{r——7,)

4

—il(r_— 'r+)+% (rot7) 7, +1-_+-2;58; (7——74)

.~ 1
U=—
27
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where 7. = 7(t, £+ ifQk — 1)¢%*™), k=1, 2, . ... Now interpret equation (5.233),
which arises naturally when we take the algebra as a phase space and the flows
as curves in this space, as telling us what happens to the 7 function. First, in
parallel with the last subsection of Section Se, show that (5.233) contains the
Hirota equations for the KAV family. Second, using (5.233) and the Zakharov—
Shabat “dressing” scheme explained earlier, show that the formula of adding
one soliton to the vacuum state can be re-expressed as 7 — exp BY({) - T where

B =exp (—2mxy), £ =im and Y(£) is the vertex operator (4.124).

Sk. The “sine-Gordon’’ flows. In Section 5c, we introduced the Lax equa-

tions for the positive time (&, k =0) flows (5.52),
Q, =[Q%, O]
where Q was lim;_,.. (1/¢)Q%, and
_ . Q; Q;
QY= g’(QO+—c—+ .- +£—]') .
These Lax equations are the integrability conditions for the set

V,=0®V, k=0.

(5.234)

But, it is known [23] that the sine-Gordon flows come from including new
equations in (5.233) corresponding to k <<0. For example, with k=—1,

Q(—'H :-2— Q“la

the compatibility of (5.234) with k=1 and —1, gives
QSD'_ Q(_l)+[Q(l), Q(—l)] =0.

Equating powers of {, one obtains

QOL. =0, Q1,r,,. - “[ Qo: Q—l]: Q—u = [Qb Q_, ]

(5.235)

A little calculation shows that this is sine—-Gordon. Let Qy=—iH, Q, =qE +rF,

Q_1 = h..]H"' 8_1E +f_1F. We find

q., = 2ie_y,

r., =—2if_y,
h_ix=4df1—re_y,
e_1x=—2qh ,,
foix=2rh_4.

Now look at the equations satisfied by the quadratic products,

h = ‘*i(Jﬂl’z + l!’llz’-z), €= 21'4’1‘._!;1, f= “21"1’2@.2,

(5.236a)
(5.236b)
(5.236¢)
(5.2364d)
(5.236¢)

(5.237)
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where  and ¢ are the vector solutions of (5.234) defined in Section 5f(i),
except that at x — +co they are normalized to have the asymptotic behavior

o ()ern (15 25).

~ ( )eXp( Z e ) (5.238)

We find
g h =af -
e, +2i{, =—2gh, (5.239)
f. —2itf =2rh.
Notice that if we expand (5.239) about £ =,
h-Ig e-Tg f-LE, (5.240)

we obtain exactly the h,e, f in
< +eE+
o= IHteE+LF
{
Now, expand about {=1(. Notice that the first terms satisfy exactly the same
equations as h_,, e_q, f_;. Hence (5.236a, b) are

G .~ "4¢1ll_/1|c=0a .= _4¢2J/_2|c=0- (5.241)

Let us simplify things by taking q=r=(w/2). Then y,=sinh(u/2), ¢,=
cosh (u/2)¢h, =cosh (u/2), ¥, =sinh (i4/2), (where we demand that u— 0 at
x ==o) whence (5.241) is simply the sinh—Gordon equation

Uy ,=—4sinh u. (5.242)

Similarly, if we set g =—r=—1/2, we find (5.241) gives the sine-Gordon
equation. In this case we may allow u to be any integer multiple of 7 at +o,
We can continue. It is not hard to show that if we take

V,,=Q™V= ( 12 Q_1+—1— Qz) v, (5.243)
then £ ¢
_2i 2 'I —2i2 i (5.244)
A lac Yl -0 r,=21 PY; Yol —o .

The cross-differentiation of (5.243) and (5.233) with k=1 1s

Qo ,=0, (5.245a)
Q,.,=—[Qp, Q-2l, (5.245b)
Q_ix =[O, Q4] (5.245¢)

Q_,, =[Oy, O_51+[Qp, Q4] (5.245d)



CONNECTING LINKS AMONG THE MIRACLES OF SOLITON MATHEMATICS 225

Note that (5.245c¢) is the same as (5.235¢) and that the elements h_,, e_,, f , of
Q_,=h_,H+e ,E+f_,F satisfy the same equations as oh/df, e/, of/df at
{=0.

As these calculations suggest, the Lax equation

Q, =[Q%, Q], (5.246)
Q Q
HQy+—+-- —“) k=0,
Q% = ¢ (Q‘ ALY & (5.247)
QL +8Q+---+*'0), k<0
and
(i
Q—hm T (5.248)
If we take j — + in (5.248), we get the familiar element
Q= Z LS Q=-iH, (5.249)

the general element of the phase space N*=K" (in the first Hamiltonian
structure) or —iH + K" (in the second Hamiltonian structure). On the other
hand, for | — —=, we have

Q=) Q, /7, (5.250)
0

which is the general element in K* = N* in the second Hamiltonian structure.
Now recall that the Lax equation is solved formally by

) 1 —i(Uyn+ Py tl) 2iy )

Q=V(-iH)V :( o o - 5.251
(i) —2itl, it ) ( )

where B
= ("1’ d”) (5.252a)

Y o
with asymptotic behavior

V~exp (-i Y git,.H) (5.252b)

as { — . (Notice the summation in the exponent includes the negative powers
and times.) Now it is relatively easy to see that the asymptotic expansion of
(5.251) about { = is exactly (5.249).

Exercises 5k.
1. Show that if

d °° ®
1 —a—qu dyr- -2q| dyq-
L=— x (5.253)

- d
2rJ' dyr - —a-—+2r dyq -
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then for e =2iy, i, f =—2ifuil,, (recall e,=gq, fi=r),

(L—C)(ff) =—(_e}1). (5.254)
Now, we know from [23] that the flows (5.246) for k =0 can be written
(;:);-azm"(_";l). (5.255)
But from (2.254),
(—ef) =% (—e;l) +)? £“1+‘ L"(—e;l) (5.256)
(G T ()

But from (5.55), we know e, , =—2ie,,1, f1.,, =2if,+1 and thus the right-hand
sides are precisely the ¢ and f defined in Section 5c. The quantity h=
(0, + Pyid,) is given by h%+ef = —1 exactly as defined in Section 5c. Thus
the asymptotic expansion of (5.251) is the familiar Q=37 Q,{™.

Next, expand Q as given by (5.251) about £ =0. We obtain Y5 Q , ;{’, the
partial sums of which when multiplied by £ are the coefficient matrices Q™
in (5.233).

How does all this connect with what we have done in the last section? Recall
that the positive flows arose by reducing the simple flow

=0, g=—g (5.257)

on T*G first by the symmetries K in a Marsden-Weinstein reduction to
NXx{(—iH{+ K™") and then by a trivial Poisson reduction to —iH{ + K™. On the
reduced phase space, the flow was given by (5.210),

Q) =k(t)(—iH)k™\(¢)

and I showed you that k(t;) was the left factor V in the asymptotic expansion
of V about { =«; i.e.

V~Vexp (—i i g"t,.H) ) (5.258)
It was also the inverse of the left factor in the factorization
g =exp (—-i i I;ft,-H)go =k 'n.
Suppose, now, that instead of factoring G and KN (g =k 'n), we factor it

instead as NK(g = n"'k). Then in exactly the same way as we did in Section 5j,
we will find that the element Q on the reduced phase space —iH+ N* is given
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by
O®) = Ad) (—iH)=n(—iH)n™", (5.259)

where n() is the left factor in the expansion of V about { =0. The right factor
is exp (—i ¥, . H) which commutes with —iH.

Therefore, the positive f, flows are found by reducing the big phase space
T*G with respect to the left action of the symmetries K (the Marsden-
Weinstein reduction) followed by the trivial Poisson reduction with respect to
the right action of the symmetries N. The _negative t flows are found by the
dual procedure, namely by factoring G = NK.

Remark. T want to stress that in identifying k(%) with V(t,), we mean that V
is taken as the left factor in the formal asymptotic expansion of V at { =< and
not the function \7( =V, O exp (i Y. {'H). Similarly, the inverse of theleft
factor in the dual factonzatlon n(t) is identified with the formal expansion of 1%
about {=0. Because { =0 is an irregular singular point when we include the
negative flows, this expansion need not be uniform in all sectors of {=0. If we
know the full analytic structure of V as function of ¢, then we could relate k
and n through the function V. But, from the algebraic viewpoint, we do not
know this and we must consider the asymptotic expansions of V about ¢ =
and ¢{=0 as unrelated. k™' is simply the left factor of g =e g, when g is
factored as k 'n’ and n is the left factor of g factored as n—*k’. I use primes on
the right factors in order to stress that the n(k) in the latter (former)
factorization is not the right factor n'(k") in the former (latter). Nevertheless,
the interpretation of k and n in terms of V, considered as a function of ¢, is still
useful.

We will now use a direct method to show that two sets of flows correspond-
ing to the positive and negative times commute.

Consider the decompositions

G=K+N (5.260a)
and
G*=G=K"'+N-+, (5.260b)

where with the inner product (){, Y)=Tr (XY)e, O=Y6 Q& "€ K" and 0] =
YT 0O eN*. Note that here Q is { times the expansion of O = V(—iH)V
about ¢ =0. Now, we know that for k=0,

Q,, ==y V@, (0), O], (5.261a)
), =—Lm VO,L(Q), O, (5.261b)
and for k<(
Q, =—m V& (Q), Q), (5.262a)
= —[m V&, _,(Q), Q. (5.262b)
Recall

VO, (k)= —XS*X, X) (5.263a)
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where S*X=¢%¥>_ X ¢, and
Vo, (X)=-S*X (5.263b)

As before @, (X) is ad—invariantnon G, the loop algebra of si(2, C).
2. Check that if we multiply Q=37 O_,¢" by £* ! for k<0 and only keep
those terms for which r+k—1=-1, we obtain Q¥ =¢(Q_,+--- +

QL™ Y.
Let us define, on G*==G, the Hamiltonian function
(X)) = Py (71 X) (5.264a)
and
x(X)= (I)l—l(ﬂ'N*X ) (5.264b)
where X=0Q+0Q, QeK"*, QeN". Then (5.262) can be written
X, =V (X). X1, k=0 (5.265a)
and (5.262) can be written
X, =1Vx(X), X], 1<0. (5.265b)
To prove (5.265a), we want to show that
Vi (X) = mnr (752 X). (5.266)

Proof. By definition

(), X) = 4 (X + 50, co

d
= a (I)k(ﬂ'K1X+ tTrKJ-X')It=0

= (Vq’k (1 X), T X ")
= (1 VO, (71 X)), - X7)

because the inner product of an element in K with one in K+ in zero,
= (mn VO (712 X), X7)

because 7. X' = X'—m: X' and the inner product of an element in N and an
element in N* is zero. Hence (5.266).

With a similar calculation, one can prove that the flows generated by the
Hamiltonians ¢4 (X), k=0, and x,(X), | <0 are in involution with respect to
the Poisson bracket

{h, e HX) =~ X, [V (X)), Vi (X)D.

3. (i) Prove that {{s, i }(X) =0 (reference [38, VI]).
(i) Show from (5.236) that

i FInT
28t 0t ,

-1
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Note that e_, =(i/2)e,, , f-,=—(i/2)f,, ,. Show that, in general,
i &ln~t

=24t ot

and
] i
€ = _i €1, f—s = 'i fl.L;

(i) What are the Hirota equations for the negative time flows?

51. The extension of sl(2,C) to A{". Let me first remind you of the basic
ideas of this chapter. We take the loop algebra G={X=Y 7 X {7,
X, esl(2, C)} of sl(2,C) on which we define a Killing form (X, Y),=
Yisk—o0 It X Y,. G is decomposed into two subalgebras, G= K+ N and via the
Killing form on G, the dual N* of N is identified with the orthogonal
complement K* of K. K* has a natural Poisson structure and the Hamiltonian
vector fields generated by a function ¥ on K= can be written down. There is a
special class of functions, the ad-invariant functions ®, which are the coeffi-
cients of {™* in the expansion of —3Tr X?, which have special relevance.
Because of ad-invariance, the Hamiltonian vector fields

Q, =—7[my V@(Q), Ql, QekK+ (5.267)
take on Lax form,

Q, =—[m V&, (Q),Q]l, QeK™- (5.268)

We have found it convenient in Sections 5i,j to extend the phase space from
K* to £ + K* where € € K¥= N" is a distinguished element in the dual of the
algebra of the symmetry group K. The set € + K* also has a Poisson bracket for
any £ € G and for those £ which belong to the orthogonal complements of
[K, K] and [N, N] (the latter is obvious since by implication € € K+ and
therefore € € N1), we have the set of commuting flows

(e +Q), =7y VD, 1(e +Q), e + Q1. (5.269)

Any element of the form (aH+bE-+cF){ is acceptable as g; for the
homogeneous grading we choose to take £ =—iH{, The reader now should
check that (5.269) is exactly the same as (5.268) when we make the consistent
choice hy=—i, ex=f, =0 in (5.268) and think of the Q in (5.269) as Y7 Q" ',
Q, =hH+ e E+{F. For the alternative grading we used in the third example
in Section S5c, we take € = —F{+E (which has weight 1).

Why is it necessary to include any new elements in the algebra? Unfortu-
nately, at this time, I do not really know. What is apparent, however, is that the
theory is somewhat incomplete. No natural Lie-theoretic way of introducing
the 7-function has been found. Moreover, several formulae, such as (5.63) for
the flux tensor, seem to beg the introduction of the operator ¢ d/d{. Further,
since the complete integrability of the Lax equations means that we can reduce
the strongly coupled system (5.268) by a canonical transformation to a set of
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uncoupled harmonic oscillators, one might expect that the Heisenberg algebra
should make an appearance. But there is no subalgebra of sl(2, C) which is
Heisenberg. An extra element, a center Z, is required.

Let us then consider

G=G+cZ+dD, D= g—z (5.270)

We have to specify the commutator and inner product rules associated with the
new elements. They are (X, Ye G)

[Z, anything] =0, (5.271a)
[D, X]= g—= ): —iX.L, (5.271b)
[X, Y]= [X, YT +{D, X], Y)Z. (5.271¢)

In (5.271¢), [X, Y] refers to the commutator under the old gl'(Z, C) rules; for
example [H, E]” =2E. The new term is (DX, Y),Z. The new nontrivial inner
product rule is

(Z,D)=1 (5.272)
which is required in order that the parallelogram volume law
(XY, 2D=(Z,[X, YD=(Y.[Z XD (5.273)

is satisfied when X, Y, Z e G. For example, check X=D, Y=Z=YeG.

Let us look at some examples. Let X € G and calculate [V®, (X), X]. Again
V@, (X)=—-S*X=-Y". X i, X ;esl(2, C) but note that, because of the
extra terms proportional to the center in (5.271c), the commutator is not zero.
Therefore the functions @, (X) are no longer ad-invariant and we lose one of
the starting points of the original theory. Nevertheless one can check by
following through all the details that, if

0 =i (hH+eE+fF) " +cZ+dD,
0

the Lax equations Q, =[Q®, Q] still hold and that ¢ and d are constants.
Next let us calculate the commutator of the gradients ®_;, ®;_;, the

Hamiltonians for the  and ¢ flows in sl(2, C). We calculate the gradients at

the distinguished point £ = ~1H§ of K*; i.e. V@, _,(—iHZ)=—iH{*. We find,

[Vq)k—l(_iHC)a V¢j—1(— iH{)] = [—iH{k, ——iHC’] = ——2k€i+kz‘
The sequence {V®, _;(—iH{)}r - .. therefore generates a Heisenberg subalgebra

of AY¥’ and we can introduce the representation

—iH* —>;'—, k>0,

I
—iH{ — 2jt_,, j<O.
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The reader should also check that the sequence {V®,_,(g)}, where € is the
distinguished element € = —F{+ E of the alternative grading, also generates a
Heisenberg subalgebra. The fact that the governing algebra A{" has Heisen-
berg subalgebras is reassuring because we know that the algebra of Poisson
brackets of the scattering data is Heisenberg. The reader will recall that the
basic idea of inverse scattering is to transform the old coordinates q, r, q,, 7, . - .
etc. (in this discussion we consider x distinguished) into new ones, the action-
angle coordinates which, when r=—q™, are

1
p= (— In aa®(§), € real, 2if,, 2i¢E, k=1,..., N),
ar

q=(In b(&), In b, In b}).
In [70] it is shown that with respect to the bracket

one ﬁnds {pis Cb} = aij’ {pia P,} :{qi, q,} = 0 ands fOl' gs §’ real, {p(g)’ q(g,)} =
S(€—¢&), {p(®), p(€N1=0, {q(&), g(£N}=0. 1 do not yet know how to identify
this Heisenberg subalgebra with the one generated by the sequence {—iH{*}>..
but believe that one is the manifestation of the other.

In addition, 1 want to draw your attention to a number of circumstances in
which the derivative element {d/d{ is important. We note that in the third
definition of the 7-function, the formula (5.91b), is

E 3
(V DV, ~iC’H)0=a—t]~1nfr.

Also, we have already noted that the formulae for the flux tensor F; can best
be written

Fy=(D, my V®,(O)], £'0),

where Q=Yg QL ", Qo=—iH and D = {%/d{. The reader will recognize this
coefficient as the extra term proportional to the center Z which appears in the
commutator

[ﬂ-N Vq)k(o)! ng]

which would describe the time evolution of the element ¢{'Q under the t, flow
if £'Q belonged to K*. In general, of course, it does_ not. However, on a purely
formal level, if we write the time dependence of {'Q+¢Z+d,D, then

o . .
a_r: (lO+¢Z+dD)=[Q", Q] + FZ (5.274)
This would imply that d; is constant and that ¢; is the gradient of In T, i.e.
d1n 7/dt. Note, in particular, that for j=0, in which case formula (5.274)
actually holds, 8 In 7/8t, = 0. This is because the dependence of all quantities e,, f,
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on (, is exponential; e;(to, ty,. ..y =e(ty, .. Je 2, f,(to, L1, . . ) =Fi(ty, . . )e%".
Then, since h, is computed from the {™" component of the equation h?+ef =
—1, each h,, and therefore 7, is ¢, independent.

Finally T want you to observe how the operator ¢ d/d¢{, together with its
product by powers of (, is important in generating exactly integrable
nonautonomous equations. These equations are also a natural hierarchy of A?)
and are quite different from the ones we have already seen. In certain limiting
cases, they are the equations one would obtain by looking for the solutions of
the former hierarchy which possess the scaling invariance property. The reader
should recall the discussion in Section 5£(iii). One of the simplest examples of
these new flows is found by considering the integrability condition of the

equation pair,
4 P V, = QMV, (5.275a)
V,+{V, =(0®+xQMV. (5.275b)

Cross-differentiating, we obtain

Q(l) + gi O(i) — Q(S) — (xQ(l)) + [Q(l) Q(3)]~ =(}
¢ dg X X 3
where [+, -] is the old sl(2, C) matrix commutator. The term ¢(d/dZ)Q® cancels
the term 1 - Q, from (xQ™), and leaves us with

Q. — (xQy), — QP +[—itH + Oy, Q] =0.

This equation is satisfied precisely for our original choice of QY=
—iH+ Q2+ Q¢+ Qs, Q,=hH+eE+fF. Equating the coefficient of £°,
we obtain the evolution equations

a, — (xq)x + 3(Guxx — 64rq,) =0, (5.276a)
re— (Xr)x + (1 — 6qr1) = 0. (5.276b)

There are several features worth noting about these equations. First, as already
mentioned, they reflect the scaling symmetries inherent in the AKNS hierar-
chy, some details of which we discussed in Section 5f(iii). It is easy to check
that if we had written the RHS of (5.275a) as 3t;Q instead of Q%, the third
terms in (5.276a,b) would be —3t3q,, and —3t,r,, respectively, and the equations
tell us that q and r are functions of X = (x/(3t5)'*) and T = xe'. If we ask that g
and r are independent of &, we recover again the self-similar solutions of the
same type to those already discussed in Section 5f(iii). The second feature of
interest is the nature of the conservation laws. Without the terms (xq), and
(xr), they are given by
d

]
— F;; =—F;, i=1,2,...;
ot Ve ]

for example:

0 0 a o1

5t 1 thr ax 31 ax4(rqxx ary — 19, —3q°r%)
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Now, what is —r(xq), —q(xr), ? It is simply the x derivative of (—xgr+4 In 7/0x)
and so

agr @ {1 3 }
T rxx+ xx T x—3 - + 1
3 o 4(q qr ax —3q°r)— xqr T
or
6F11 0 ( Bln‘r)
— =—Fi,+xF;,; + .
a ax\ " ' 0x

It would appear that the gradient of In v again wants t0 make an appearance.
Let us explore further. Consider F,,=—2ih;=if2(rq, —r.q).

oF,, 9F., i
2 =a—x”+§ (r(x@)xe + G (X7, — G(XP) = T (X))
_dF.
a;2+ (x(rq, —1r,q), +3(rq, — 1,q))
oF., @ a1
= 32 +— xF12 +2 nT
Jx Ox dx ot,

zi (F32+xF12+261n T) .
X at,
But if we are going to introduce t, and think of it as an independent variable,
we must ensure that the t, flow commutes with the r flow. In order to guarantee
this, we have to add 2:,0® to the RHS of (5.274) which does not change the
compatibility of (5.275a,b); it simply is equivalent to choosing h’+ef=
—1+c¢,{"'+- - -, with a suitably chosen ¢,. Consider then,

V., =QWYV, (5.277a)

V,=Q®V, (5.277b)

V,+LV,=(Q®+26,0P +xQM) V. (5.277¢)
Cross-differentiate (5.277a,¢) and find, after a little calculation,

Q1 — (xQ1)x —2,Qy,, +[Qy, Q5]=0, (5.278)

where we have used the compatibility
QY- Q@ +[Q™, Q] (5.279)
of (5.277a,b). From (5.277b,c) we have
022) - ich + Olf - Qg) - 2‘208) _ 20(2) _ xOS)
+[Q?, 0®+x0%)=0.

Recall that O(l)_ 0(2)”[0(1)’ 0(2)], and Og) +[Q(3), 0(2)] =Q$f’- Then we
have

0P~ Q- 26,02 -30P - QP =0,
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Equating powers of £, we obtain

£ Qg —(xQq)x —2t,Q4,,— Q4,, =0,
€0: QZt - xQ2x - 2(t202)t2— 02:3 =0.

The reader should check that the last equations are indeed compatible.

In summary, we note:

(i) The inclusion of the new basis elements ¢ d/d{ and Z in the phase space
introduces a new class of flows which are nonautonomous.

(ii) It would appear that, in addition to the phase space variables (h, e, f.),
one should also include as dependent variables ¢; and 8In4/d¢, j=1,2,..., the
latter as coefficients of the centre.

(iii) The new flows have also an infinite set of local conservation laws and
symmetries as long as we think of dln /0 as a new local variable. For
example, since d In 7/8¢; = —2i [*™"1 h;,, dx, we may think of the new variable as
the lower limit in the integration. The symmetries seem to be the ones
suggested by Chen, Lee and Lin [122] although I have not checked this. I note
that the algebra which their symmetries o, satisfy is [o,,, 0, ]=(m —n)o, 4 n_1.
Observe that this is precisely the Virasoro algebra satisfied by the sequence
o, =—¢"dldL.

(iv) It would be my guess that the element

J dln~t B ii
m'Q+ o Z+( gdg)

1

is very important in the whole theory.

And so, I leave you with a lot of open ends. 1 hope you find the hints and
suggestions of this section as tantalizing as I do and, moreover, that you do
something about it. Good luck!

Note. 1 do not want to leave the reader with the impression after reading
Section 5b that the Wahlquist-Estabrook procedure is a foolproof way of
discovering the Lax pair formulation of integrable systems. Much depends on
being able to identify the dependence of P in (5.3) on the phase space
coordinates q, Gy, G - - - €tc. Indeed I know of several examples of finite
dimensional integrable systems for which all the constants of the motion are
known and for which no Lax pair has yet been found. For example, I challenge
the reader to consider the stationary equation for the ts flow in the KAV family,
Qoxx + 592 +10qq,.. + 10g> =0, which we know is Hamiltonian with canonical
coordinates

P1=G @1=iGx139")s P21 T4 GR=4q
and Hamiltonian
H =p,p, +:p1— 24192+ 39,95
with second constant

G= "%(Pz + %Pl‘-h)z + %fhP% - 2‘-1%‘12 + %‘hqg
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in involution. H generates the x flow, G the t; flow. Given the equation and
the above information, can you show via Wahlquist-Estabrook that the Lax
equation is Q, =[Q™, Q], the compatibility condition for yV=QV, V,=Q®V
where

QM =—ifH+qE-F, Q=(i(B—3B,)H+(—3B,, +i{B, —gB)E+BF,
1
=32 Z (g +3qD) ?
B=—{"+¢ g (@ q°)

Another example for which I do not yet know the answer is generated by
H=3pl+3p3+qi+2q;
with second constant

G =q31+4q393—4piq.+ 4p1P2¢s-

The difficulty is that one does not have much help in calculating the depen-
dence of Q, Q'Y on the coordinates in which the problem is originally given.

However, 1 do not want to sound too gloomy because the scheme does work
some of the time (especially when one couples the method with information
gleaned from the Painlevé test) and, when it does, has the great advantage of
pointing to the coordinates in which the constants of the motion separate. For
example, in the first example quoted, let

B=—(*-p )
and find
pi—ps
H=-8—"—"—42(p},— n3)p— 1),
Wi 2
which separates into

H 1 H 1 G
s &2 _ 2.2 __ s M 7 _ 2 2 _
[28] ] 1 4(P«1 o) Mix Ly { 273 4(P«2 Ml) 2x ]’

which is (3.168) and, as we have shown, integrable via the Abel map.

It is therefore reasonable to ask: Does every Hamiltonian system integrable
in the sense of Liouville (N constants of the motion in involution) have an
equivalent Lax pair formulation and, if so, how does one construct it?
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